These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33922319)

  • 1. Simulation and Optimization of SNAP-Taper Coupling System in Displacement Sensing.
    Chen J; Dong Y; Wang H; Sun P; Zeng X
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Displacement sensing in a multimode SNAP microcavity by an artificial neural network.
    Dong Y; Sun P; Zeng X; Wang J; Li Y; Wang M; Wang H
    Opt Express; 2022 Jul; 30(15):27015-27027. PubMed ID: 36236882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid and high-precision displacement sensing based on the multiple mode dip areas in a SNAP microresonator.
    Dong Y; Li Y; Wang J; Huang S; Zhang S; Wang H
    Appl Opt; 2023 Sep; 62(27):7240-7247. PubMed ID: 37855580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Micron-Range Displacement Sensor Based on Thermo-Optically Tuned Whispering Gallery Modes in a Microcapillary Resonator.
    Wang Z; Mallik AK; Wei F; Wang Z; Rout A; Wu Q; Semenova Y
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-Fiber Polymer Microdisk Resonator and Its Sensing Applications of Temperature and Humidity.
    Ji P; Zhu M; Liao C; Zhao C; Yang K; Xiong C; Han J; Li C; Zhang L; Liu Y; Wang Y
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):48119-48126. PubMed ID: 34585566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FDTD Simulation: Simultaneous Measurement of the Refractive Index and the Pressure Using Microdisk Resonator with Two Whispering-Gallery Modes.
    Zhang P; He D; Zhang C; Yan Z
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fiber ring laser for intracavity sensing using a whispering-gallery-mode resonator.
    Nunzi Conti G; Berneschi S; Barucci A; Cosi F; Soria S; Trono C
    Opt Lett; 2012 Jul; 37(13):2697-9. PubMed ID: 22743499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of an Optical Sensor Based on Whispering Gallery Modes (WGMs) on the Surface Guiding Layer of Glass Filaments.
    Tan W; Shi L; Chen X
    Sensors (Basel); 2008 Oct; 8(10):6761-6768. PubMed ID: 27873896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical bio-chemical sensors based on whispering gallery mode resonators.
    Zhang YN; Zhou T; Han B; Zhang A; Zhao Y
    Nanoscale; 2018 Aug; 10(29):13832-13856. PubMed ID: 30020301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel double step approach for optical sensing via microsphere WGM resonance.
    Palma G; Falconi MC; Starecki F; Nazabal V; Yano T; Kishi T; Kumagai T; Prudenzano F
    Opt Express; 2016 Nov; 24(23):26956-26971. PubMed ID: 27857423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-precision angular rate detection based on an optomechanical micro hemispherical shell resonator gyroscope.
    Huang W; Zhang S; Hassan JNA; Yan X; Chen D; Wen G; Chen K; Deng G; Huang Y
    Opt Express; 2023 Apr; 31(8):12433-12448. PubMed ID: 37157403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman gain induced mode evolution and on-demand coupling control in whispering-gallery-mode microcavities.
    Yang X; Özdemir ŞK; Peng B; Yilmaz H; Lei FC; Long GL; Yang L
    Opt Express; 2015 Nov; 23(23):29573-83. PubMed ID: 26698440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-specificity molecular sensing on an individual whispering-gallery-mode cavity: coupling-enhanced Raman scattering by photoinduced charge transfer and cavity effects.
    Fan X; Wang R; Li M; Tang X; Xu C; Hao Q; Qiu T
    Nanoscale Horiz; 2023 Jan; 8(2):195-201. PubMed ID: 36468209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ringing phenomenon based whispering-gallery-mode sensing.
    Ye MY; Shen MX; Lin XM
    Sci Rep; 2016 Jan; 6():19597. PubMed ID: 26796871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbubble-probe WGM resonators enable displacement measurements with high spatial resolution.
    Liu B; Liu S; Zhang Q; Hong G; Liao C; Xu X; Liu L; Qu J; Wang Y
    Opt Lett; 2023 Apr; 48(7):1922-1925. PubMed ID: 37221800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whispering-Gallery Mode Optoplasmonic Microcavities: From Advanced Single-Molecule Sensors and Microlasers to Applications in Synthetic Biology.
    Houghton MC; Kashanian SV; Derrien TL; Masuda K; Vollmer F
    ACS Photonics; 2024 Mar; 11(3):892-903. PubMed ID: 38523742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface nanoscale axial photonics at a capillary fiber.
    Hamidfar T; Dmitriev A; Magdan B; Bianucci P; Sumetsky M
    Opt Lett; 2017 Aug; 42(16):3060-3063. PubMed ID: 28809872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whispering-Gallery Mode Micro-Ring Resonator Integrated with a Single-Core Fiber Tip for Refractive Index Sensing.
    Halendy M; Ertman S
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical microcavity: sensing down to single molecules and atoms.
    Yoshie T; Tang L; Su SY
    Sensors (Basel); 2011; 11(2):1972-91. PubMed ID: 22319393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation and analysis of a metamaterial sensor based on a microring resonator.
    Huang M; Yang J; Jun S; Mu S; Lan Y
    Sensors (Basel); 2011; 11(6):5886-99. PubMed ID: 22163933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.