BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 33922338)

  • 1. PyPLIF HIPPOS-Assisted Prediction of Molecular Determinants of Ligand Binding to Receptors.
    Istyastono EP; Yuniarti N; Prasasty VD; Mungkasi S
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33922338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PyPLIF HIPPOS: A Molecular Interaction Fingerprinting Tool for Docking Results of AutoDock Vina and PLANTS.
    Istyastono EP; Radifar M; Yuniarti N; Prasasty VD; Mungkasi S
    J Chem Inf Model; 2020 Aug; 60(8):3697-3702. PubMed ID: 32687350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PyPLIF HIPPOS and Receptor Ensemble Docking Increase the Prediction Accuracy of the Structure-Based Virtual Screening Protocol Targeting Acetylcholinesterase.
    Istyastono EP; Riswanto FDO; Yuniarti N; Prasasty VD; Mungkasi S
    Molecules; 2022 Sep; 27(17):. PubMed ID: 36080428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virtual Screening of Human Class-A GPCRs Using Ligand Profiles Built on Multiple Ligand-Receptor Interactions.
    Chan WKB; Zhang Y
    J Mol Biol; 2020 Aug; 432(17):4872-4890. PubMed ID: 32652079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling and Deorphanization of Orphan GPCRs.
    Diaz C; Angelloz-Nicoud P; Pihan E
    Methods Mol Biol; 2018; 1705():413-429. PubMed ID: 29188576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ensemble Docking in Drug Discovery: How Many Protein Configurations from Molecular Dynamics Simulations are Needed To Reproduce Known Ligand Binding?
    Evangelista Falcon W; Ellingson SR; Smith JC; Baudry J
    J Phys Chem B; 2019 Jun; 123(25):5189-5195. PubMed ID: 30695645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FINDSITE(comb): a threading/structure-based, proteomic-scale virtual ligand screening approach.
    Zhou H; Skolnick J
    J Chem Inf Model; 2013 Jan; 53(1):230-40. PubMed ID: 23240691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Receptor-ligand docking simulation for membrane proteins].
    Hirokawa T
    Yakugaku Zasshi; 2007 Jan; 127(1):123-31. PubMed ID: 17202792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential application of ligand and structure based modeling approaches to index chemicals for their hH4R antagonism.
    Pappalardo M; Shachaf N; Basile L; Milardi D; Zeidan M; Raiyn J; Guccione S; Rayan A
    PLoS One; 2014; 9(10):e109340. PubMed ID: 25330207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand and decoy sets for docking to G protein-coupled receptors.
    Gatica EA; Cavasotto CN
    J Chem Inf Model; 2012 Jan; 52(1):1-6. PubMed ID: 22168315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods for Virtual Screening of GPCR Targets: Approaches and Challenges.
    Cross JB
    Methods Mol Biol; 2018; 1705():233-264. PubMed ID: 29188566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of potential dual agonists of FXR and TGR5 using e-pharmacophore based virtual screening.
    Sindhu T; Srinivasan P
    Mol Biosyst; 2015 May; 11(5):1305-18. PubMed ID: 25787676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Basis of Ligand Dissociation from G Protein-Coupled Receptors and Predicting Residence Time.
    Guo D; IJzerman AP
    Methods Mol Biol; 2018; 1705():197-206. PubMed ID: 29188564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic Use of GPCR Modeling and SDM Experiments to Understand Ligand Binding.
    Potterton A; Heifetz A; Townsend-Nicholson A
    Methods Mol Biol; 2018; 1705():335-343. PubMed ID: 29188570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From three-dimensional GPCR structure to rational ligand discovery.
    Kooistra AJ; Leurs R; de Esch IJ; de Graaf C
    Adv Exp Med Biol; 2014; 796():129-57. PubMed ID: 24158804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Insights from Molecular Dynamics Simulations for G Protein-Coupled Receptor Drug Discovery.
    Zou Y; Ewalt J; Ng HL
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31470676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interacting with GPCRs: Using Interaction Fingerprints for Virtual Screening.
    Lenselink EB; Jespers W; van Vlijmen HW; IJzerman AP; van Westen GJ
    J Chem Inf Model; 2016 Oct; 56(10):2053-2060. PubMed ID: 27626908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Ligand Binding to GPCRs Through Computational Methods.
    Vasile S; Esguerra M; Jespers W; Oliveira A; Sallander J; Åqvist J; Gutiérrez-de-Terán H
    Methods Mol Biol; 2018; 1705():23-44. PubMed ID: 29188557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular interaction fingerprint approaches for GPCR drug discovery.
    Vass M; Kooistra AJ; Ritschel T; Leurs R; de Esch IJ; de Graaf C
    Curr Opin Pharmacol; 2016 Oct; 30():59-68. PubMed ID: 27479316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenges and Opportunities in Drug Discovery of Biased Ligands.
    Rodríguez-Espigares I; Kaczor AA; Stepniewski TM; Selent J
    Methods Mol Biol; 2018; 1705():321-334. PubMed ID: 29188569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.