BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 33922379)

  • 1. Peptides to Tackle Leishmaniasis: Current Status and Future Directions.
    Robles-Loaiza AA; Pinos-Tamayo EA; Mendes B; Teixeira C; Alves C; Gomes P; Almeida JR
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33922379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current approaches to discover marine antileishmanial natural products.
    Tempone AG; Martins de Oliveira C; Berlinck RG
    Planta Med; 2011 Apr; 77(6):572-85. PubMed ID: 21243582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modes of action of Leishmanicidal antimicrobial peptides.
    Marr AK; McGwire BS; McMaster WR
    Future Microbiol; 2012 Sep; 7(9):1047-59. PubMed ID: 22953706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rationally Designed Minimal Bioactive Domains of AS-48 Bacteriocin Homologs Possess Potent Antileishmanial Properties.
    Corman HN; Ross JN; Fields FR; Shoue DA; McDowell MA; Lee SW
    Microbiol Spectr; 2022 Dec; 10(6):e0265822. PubMed ID: 36342284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment of leishmaniasis: a review and assessment of recent research.
    Elmahallawy EK; Agil A
    Curr Pharm Des; 2015; 21(17):2259-75. PubMed ID: 25543123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in antileishmanial drug development.
    Davis AJ; Kedzierski L
    Curr Opin Investig Drugs; 2005 Feb; 6(2):163-9. PubMed ID: 15751739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial peptides for leishmaniasis.
    Cobb SL; Denny PW
    Curr Opin Investig Drugs; 2010 Aug; 11(8):868-75. PubMed ID: 20721829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plants as Antileishmanial Agents: Current Scenario.
    Ullah N; Nadhman A; Siddiq S; Mehwish S; Islam A; Jafri L; Hamayun M
    Phytother Res; 2016 Dec; 30(12):1905-1925. PubMed ID: 27704633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploration of Antileishmanial Compounds Derived from Natural Sources.
    Peer GDG; Priyadarshini A; Gupta A; Vibhuti A; Raj VS; Chang CM; Pandey RP
    Antiinflamm Antiallergy Agents Med Chem; 2024; 23(1):1-13. PubMed ID: 38279725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promising therapeutic targets for antileishmanial drugs.
    Werbovetz KA
    Expert Opin Ther Targets; 2002 Aug; 6(4):407-22. PubMed ID: 12223057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Need for sustainable approaches in antileishmanial drug discovery.
    Hendrickx S; Caljon G; Maes L
    Parasitol Res; 2019 Oct; 118(10):2743-2752. PubMed ID: 31473855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A chloroquinoline derivate presents effective in vitro and in vivo antileishmanial activity against Leishmania species that cause tegumentary and visceral leishmaniasis.
    Sousa JKT; Antinarelli LMR; Mendonça DVC; Lage DP; Tavares GSV; Dias DS; Ribeiro PAF; Ludolf F; Coelho VTS; Oliveira-da-Silva JA; Perin L; Oliveira BA; Alvarenga DF; Chávez-Fumagalli MA; Brandão GC; Nobre V; Pereira GR; Coimbra ES; Coelho EAF
    Parasitol Int; 2019 Dec; 73():101966. PubMed ID: 31362122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro leishmanicidal activity of antimicrobial peptide KDEL against Leishmania tarentolae.
    Cao L; Jiang W; Cao S; Zhao P; Liu J; Dong H; Guo Y; Liu Q; Gong P
    Acta Biochim Biophys Sin (Shanghai); 2019 Dec; 51(12):1286-1292. PubMed ID: 31761925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potentials of marine natural products against malaria, leishmaniasis, and trypanosomiasis parasites: a review of recent articles.
    Nweze JA; Mbaoji FN; Li YM; Yang LY; Huang SS; Chigor VN; Eze EA; Pan LX; Zhang T; Yang DF
    Infect Dis Poverty; 2021 Jan; 10(1):9. PubMed ID: 33482912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Limitations of Current Therapeutic Options, Possible Drug Targets and Scope of Natural Products in Control of Leishmaniasis.
    Tiwari N; Gedda MR; Tiwari VK; Singh SP; Singh RK
    Mini Rev Med Chem; 2018; 18(1):26-41. PubMed ID: 28443518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eugenia piauhiensis Vellaff. essential oil and γ-elemene its major constituent exhibit antileishmanial activity, promoting cell membrane damage and in vitro immunomodulation.
    Nunes TAL; Costa LH; De Sousa JMS; De Souza VMR; Rodrigues RRL; Val MDCA; Pereira ACTDC; Ferreira GP; Da Silva MV; Da Costa JMAR; Véras LMC; Diniz RC; Rodrigues KADF
    Chem Biol Interact; 2021 Apr; 339():109429. PubMed ID: 33713644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Medicinal plants from the Brazilian Amazonian region and their antileishmanial activity: a review.
    Da Silva BJM; Hage AAP; Silva EO; Rodrigues APD
    J Integr Med; 2018 Jul; 16(4):211-222. PubMed ID: 29691188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A "Golden Age" for the discovery of new antileishmanial agents: Current status of leishmanicidal gold complexes and prospective targets beyond the trypanothione system.
    Rosa LB; Aires RL; Oliveira LS; Fontes JV; Miguel DC; Abbehausen C
    ChemMedChem; 2021 Jun; 16(11):1681-1695. PubMed ID: 33615725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Update on Natural Antileishmanial Treatment Options from Plants, Fungi and Algae.
    Koko WS; Al Nasr IS; Khan TA; Schobert R; Biersack B
    Chem Biodivers; 2022 Jan; 19(1):e202100542. PubMed ID: 34822224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the current status of privileged N-heterocycles as antileishmanial agents.
    Razzaghi-Asl N; Sepehri S; Ebadi A; Karami P; Nejatkhah N; Johari-Ahar M
    Mol Divers; 2020 May; 24(2):525-569. PubMed ID: 31028558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.