These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 33922791)

  • 41. Effects of antibodies against N-cadherin and N-CAM on the cranial neural crest and neural tube.
    Bronner-Fraser M; Wolf JJ; Murray BA
    Dev Biol; 1992 Oct; 153(2):291-301. PubMed ID: 1397686
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biphasic influence of Miz1 on neural crest development by regulating cell survival and apical adhesion complex formation in the developing neural tube.
    Kerosuo L; Bronner ME
    Mol Biol Cell; 2014 Feb; 25(3):347-55. PubMed ID: 24307680
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regulation of PP2A activity by Mid1 controls cranial neural crest speed and gangliogenesis.
    Latta EJ; Golding JP
    Mech Dev; 2012; 128(11-12):560-76. PubMed ID: 22285438
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cell surface beta 1,4-galactosyltransferase functions during neural crest cell migration and neurulation in vivo.
    Hathaway HJ; Shur BD
    J Cell Biol; 1992 Apr; 117(2):369-82. PubMed ID: 1560031
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effect of overexpression of Dlx2 on the migration, proliferation and osteogenic differentiation of cranial neural crest stem cells.
    Dai J; Kuang Y; Fang B; Gong H; Lu S; Mou Z; Sun H; Dong Y; Lu J; Zhang W; Zhang J; Wang Z; Wang X; Shen G
    Biomaterials; 2013 Mar; 34(8):1898-910. PubMed ID: 23246068
    [TBL] [Abstract][Full Text] [Related]  

  • 46. MESP2 variants contribute to conotruncal heart defects by inhibiting cardiac neural crest cell proliferation.
    Zhang E; Yang J; Liu Y; Hong N; Xie H; Fu Q; Li F; Chen S; Yu Y; Sun K
    J Mol Med (Berl); 2020 Jul; 98(7):1035-1048. PubMed ID: 32572506
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prostaglandin E2 EP1 receptor enhances TGF-β1-induced mesangial cell injury.
    Chen X; Jiang D; Wang J; Chen X; Xu X; Xi P; Fan Y; Zhang X; Guan Y
    Int J Mol Med; 2015 Jan; 35(1):285-93. PubMed ID: 25352206
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Annexin a6 modulates chick cranial neural crest cell emigration.
    Wu CY; Taneyhill LA
    PLoS One; 2012; 7(9):e44903. PubMed ID: 22984583
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative analysis of neural crest cell death, migration, and function during vertebrate embryogenesis.
    Kulesa P; Ellies DL; Trainor PA
    Dev Dyn; 2004 Jan; 229(1):14-29. PubMed ID: 14699574
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regulation of Msx genes by a Bmp gradient is essential for neural crest specification.
    Tribulo C; Aybar MJ; Nguyen VH; Mullins MC; Mayor R
    Development; 2003 Dec; 130(26):6441-52. PubMed ID: 14627721
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Zebrafish con/disp1 reveals multiple spatiotemporal requirements for Hedgehog-signaling in craniofacial development.
    Schwend T; Ahlgren SC
    BMC Dev Biol; 2009 Nov; 9():59. PubMed ID: 19948063
    [TBL] [Abstract][Full Text] [Related]  

  • 52. TGF-β effects on prostate cancer cell migration and invasion are mediated by PGE2 through activation of PI3K/AKT/mTOR pathway.
    Vo BT; Morton D; Komaragiri S; Millena AC; Leath C; Khan SA
    Endocrinology; 2013 May; 154(5):1768-79. PubMed ID: 23515290
    [TBL] [Abstract][Full Text] [Related]  

  • 53. hReg-CNCC reconstructs a regulatory network in human cranial neural crest cells and annotates variants in a developmental context.
    Feng Z; Duren Z; Xiong Z; Wang S; Liu F; Wong WH; Wang Y
    Commun Biol; 2021 Apr; 4(1):442. PubMed ID: 33824393
    [TBL] [Abstract][Full Text] [Related]  

  • 54. TGF-β-activated kinase 1 (Tak1) mediates agonist-induced Smad activation and linker region phosphorylation in embryonic craniofacial neural crest-derived cells.
    Yumoto K; Thomas PS; Lane J; Matsuzaki K; Inagaki M; Ninomiya-Tsuji J; Scott GJ; Ray MK; Ishii M; Maxson R; Mishina Y; Kaartinen V
    J Biol Chem; 2013 May; 288(19):13467-80. PubMed ID: 23546880
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pbx loss in cranial neural crest, unlike in epithelium, results in cleft palate only and a broader midface.
    Welsh IC; Hart J; Brown JM; Hansen K; Rocha Marques M; Aho RJ; Grishina I; Hurtado R; Herzlinger D; Ferretti E; Garcia-Garcia MJ; Selleri L
    J Anat; 2018 Aug; 233(2):222-242. PubMed ID: 29797482
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cranial anomaly of homozygous rSey rat is associated with a defect in the migration pathway of midbrain crest cells.
    Osumi-Yamashita N; Kuratani S; Ninomiya Y; Aoki K; Iseki S; Chareonvit S; Doi H; Fujiwara M; Watanabe T; Eto K
    Dev Growth Differ; 1997 Feb; 39(1):53-67. PubMed ID: 9079035
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Patterning the cranial neural crest: hindbrain segmentation and Hox gene plasticity.
    Trainor PA; Krumlauf R
    Nat Rev Neurosci; 2000 Nov; 1(2):116-24. PubMed ID: 11252774
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Concerted action of Msx1 and Msx2 in regulating cranial neural crest cell differentiation during frontal bone development.
    Han J; Ishii M; Bringas P; Maas RL; Maxson RE; Chai Y
    Mech Dev; 2007; 124(9-10):729-45. PubMed ID: 17693062
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Robo signaling regulates the production of cranial neural crest cells.
    Li Y; Zhang XT; Wang XY; Wang G; Chuai M; Münsterberg A; Yang X
    Exp Cell Res; 2017 Dec; 361(1):73-84. PubMed ID: 28987541
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deep Proteome of the Developing Chick Midbrain.
    Stepler KE; Hannah SC; Taneyhill LA; Nemes P
    J Proteome Res; 2023 Oct; 22(10):3264-3274. PubMed ID: 37616547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.