These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 33922859)
1. Visible Light-Curable Chitosan Ink for Extrusion-Based and Vat Polymerization-Based 3D Bioprintings. Hidaka M; Kojima M; Nakahata M; Sakai S Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33922859 [TBL] [Abstract][Full Text] [Related]
2. Visible light photocrosslinking of sugar beet pectin for 3D bioprinting applications. Mubarok W; Elvitigala KCML; Kotani T; Sakai S Carbohydr Polym; 2023 Sep; 316():121026. PubMed ID: 37321724 [TBL] [Abstract][Full Text] [Related]
3. Recent Advances in Formulating and Processing Biomaterial Inks for Vat Polymerization-Based 3D Printing. Li W; Mille LS; Robledo JA; Uribe T; Huerta V; Zhang YS Adv Healthc Mater; 2020 Aug; 9(15):e2000156. PubMed ID: 32529775 [TBL] [Abstract][Full Text] [Related]
4. Visible Light-Induced Hydrogelation of an Alginate Derivative and Application to Stereolithographic Bioprinting Using a Visible Light Projector and Acid Red. Sakai S; Kamei H; Mori T; Hotta T; Ohi H; Nakahata M; Taya M Biomacromolecules; 2018 Feb; 19(2):672-679. PubMed ID: 29393630 [TBL] [Abstract][Full Text] [Related]
5. An injectable, self-healing phenol-functionalized chitosan hydrogel with fast gelling property and visible light-crosslinking capability for 3D printing. Liu Y; Wong CW; Chang SW; Hsu SH Acta Biomater; 2021 Mar; 122():211-219. PubMed ID: 33444794 [TBL] [Abstract][Full Text] [Related]
6. Development of phenol-grafted polyglucuronic acid and its application to extrusion-based bioprinting inks. Sakai S; Kotani T; Harada R; Goto R; Morita T; Bouissil S; Dubessay P; Pierre G; Michaud P; El Boutachfaiti R; Nakahata M; Kojima M; Petit E; Delattre C Carbohydr Polym; 2022 Feb; 277():118820. PubMed ID: 34893237 [TBL] [Abstract][Full Text] [Related]
8. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs. Ravanbakhsh H; Bao G; Luo Z; Mongeau LG; Zhang YS ACS Biomater Sci Eng; 2021 Sep; 7(9):4009-4026. PubMed ID: 34510905 [TBL] [Abstract][Full Text] [Related]
9. Optimization of chitosan-gelatin-based 3D-printed scaffolds for tissue engineering and drug delivery applications. Palamidi A; Koumentakou I; Michopoulou A; Bikiaris DN; Terzopoulou Z Int J Pharm; 2024 Dec; 666():124776. PubMed ID: 39343329 [TBL] [Abstract][Full Text] [Related]
10. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering. Kumar A; I Matari IA; Han SS Biofabrication; 2020 Mar; 12(2):025029. PubMed ID: 32029691 [TBL] [Abstract][Full Text] [Related]
11. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091 [TBL] [Abstract][Full Text] [Related]
12. Differentiation potential of human adipose stem cells bioprinted with hyaluronic acid/gelatin-based bioink through microextrusion and visible light-initiated crosslinking. Sakai S; Ohi H; Hotta T; Kamei H; Taya M Biopolymers; 2018 Feb; 109(2):. PubMed ID: 29139103 [TBL] [Abstract][Full Text] [Related]
13. 3D printing of high-strength chitosan hydrogel scaffolds without any organic solvents. Zhou L; Ramezani H; Sun M; Xie M; Nie J; Lv S; Cai J; Fu J; He Y Biomater Sci; 2020 Sep; 8(18):5020-5028. PubMed ID: 32844842 [TBL] [Abstract][Full Text] [Related]
15. DLP printing photocurable chitosan to build bio-constructs for tissue engineering. Shen Y; Tang H; Huang X; Hang R; Zhang X; Wang Y; Yao X Carbohydr Polym; 2020 May; 235():115970. PubMed ID: 32122504 [TBL] [Abstract][Full Text] [Related]
16. Visible light-curable water-soluble chitosan derivative, chitosan hydrogel, and preparation method: a patent evaluation of US2019202998A1. Marimuthu T; Kumar P; Choonara YE Expert Opin Ther Pat; 2021 May; 31(5):351-360. PubMed ID: 33711239 [No Abstract] [Full Text] [Related]
17. Chitosan hydrogels in 3D printing for biomedical applications. Rajabi M; McConnell M; Cabral J; Ali MA Carbohydr Polym; 2021 May; 260():117768. PubMed ID: 33712126 [TBL] [Abstract][Full Text] [Related]
18. Digital Light Processing Based Bioprinting with Composable Gradients. Wang M; Li W; Mille LS; Ching T; Luo Z; Tang G; Garciamendez CE; Lesha A; Hashimoto M; Zhang YS Adv Mater; 2022 Jan; 34(1):e2107038. PubMed ID: 34609032 [TBL] [Abstract][Full Text] [Related]
19. 3D bioprinting of complex channels within cell-laden hydrogels. Ji S; Almeida E; Guvendiren M Acta Biomater; 2019 Sep; 95():214-224. PubMed ID: 30831327 [TBL] [Abstract][Full Text] [Related]
20. Bioprinted chitosan-gelatin thermosensitive hydrogels using an inexpensive 3D printer. Roehm KD; Madihally SV Biofabrication; 2017 Nov; 10(1):015002. PubMed ID: 29083312 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]