These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 33922949)

  • 21. An SPH Approach for Non-Spherical Particles Immersed in Newtonian Fluids.
    Kijanski N; Krach D; Steeb H
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32438580
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discrete Element Simulation and Validation of a Mixing Process of Granular Materials.
    Chen J; Furuichi M; Nishiura D
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32182646
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of Positron Emission Particle Tracking (PEPT) to validate a Discrete Element Method (DEM) model of granular flow and mixing in the Turbula mixer.
    Marigo M; Davies M; Leadbeater T; Cairns DL; Ingram A; Stitt EH
    Int J Pharm; 2013 Mar; 446(1-2):46-58. PubMed ID: 23376506
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-way coupled SPH and particle level set fluid simulation.
    Losasso F; Talton J; Kwatra N; Fedkiw R
    IEEE Trans Vis Comput Graph; 2008; 14(4):797-804. PubMed ID: 18467755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of Membrane Structure on Oil-Water Separation by Smoothed Particle Hydrodynamics.
    Liu J; Xie X; Meng Q; Sun S
    Membranes (Basel); 2022 Mar; 12(4):. PubMed ID: 35448356
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Processing Impact on Monoclonal Antibody Drug Products: Protein Subvisible Particulate Formation Induced by Grinding Stress.
    Gikanga B; Eisner DR; Ovadia R; Day ES; Stauch OB; Maa YF
    PDA J Pharm Sci Technol; 2017; 71(3):172-188. PubMed ID: 27789805
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modelling and simulation of the hydrodynamics and mixing profiles in the human proximal colon using Discrete Multiphysics.
    Schütt M; Stamatopoulos K; Simmons MJH; Batchelor HK; Alexiadis A
    Comput Biol Med; 2020 Jun; 121():103819. PubMed ID: 32568686
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detailed modeling and process design of an advanced continuous powder mixer.
    Toson P; Siegmann E; Trogrlic M; Kureck H; Khinast J; Jajcevic D; Doshi P; Blackwood D; Bonnassieux A; Daugherity PD; Am Ende MT
    Int J Pharm; 2018 Dec; 552(1-2):288-300. PubMed ID: 30268852
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Smoothed particle hydrodynamic modelling of the cerebrospinal fluid for brain biomechanics: Accuracy and stability.
    Duckworth H; Sharp DJ; Ghajari M
    Int J Numer Method Biomed Eng; 2021 Apr; 37(4):e3440. PubMed ID: 33480161
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Numerical Investigation of the Particle Dynamics in a Rotorgranulator Depending on the Properties of the Coating Liquid.
    Grohn P; Heinrich S; Antonyuk S
    Pharmaceutics; 2023 Jan; 15(2):. PubMed ID: 36839791
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An arbitrary Lagrangian Eulerian smoothed particle hydrodynamics (ALE-SPH) method with a boundary volume fraction formulation for fluid-structure interaction.
    Jacob B; Drawert B; Yi TM; Petzold L
    Eng Anal Bound Elem; 2021 Jul; 128():274-289. PubMed ID: 34040286
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modelling of thrombus formation using smoothed particle hydrodynamics method.
    Monteleone A; Viola A; Napoli E; Burriesci G
    PLoS One; 2023; 18(2):e0281424. PubMed ID: 36745608
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deformation of Soft Tissue and Force Feedback Using the Smoothed Particle Hydrodynamics.
    Liu X; Wang R; Li Y; Song D
    Comput Math Methods Med; 2015; 2015():598415. PubMed ID: 26417380
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigating mixing and emptying for aqueous liquid content from the stomach using a coupled biomechanical-SPH model.
    Harrison SM; Cleary PW; Sinnott MD
    Food Funct; 2018 Jun; 9(6):3202-3219. PubMed ID: 29775189
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theoretical calculation of the buoyancy force on a particle in flowing granular mixtures.
    Kumar A; Khakhar DV; Tripathi A
    Phys Rev E; 2019 Oct; 100(4-1):042909. PubMed ID: 31770900
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Particle-Scale Modeling to Understand Liquid Distribution in Twin-Screw Wet Granulation.
    Kumar A; Radl S; Gernaey KV; De Beer T; Nopens I
    Pharmaceutics; 2021 Jun; 13(7):. PubMed ID: 34206609
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigating mixing and segregation using discrete element modelling (DEM) in the Freeman FT4 rheometer.
    Yan Z; Wilkinson SK; Stitt EH; Marigo M
    Int J Pharm; 2016 Nov; 513(1-2):38-48. PubMed ID: 27596114
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiphoton microscope measurement-based biphasic multiscale analyses of knee joint articular cartilage and chondrocyte by using visco-anisotropic hyperelastic finite element method and smoothed particle hydrodynamics method.
    Nakamachi E; Noma T; Nakahara K; Tomita Y; Morita Y
    Int J Numer Method Biomed Eng; 2017 Nov; 33(11):. PubMed ID: 28058781
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of particle size and blender size on blending performance of bi-component granular mixing: A DEM and experimental study.
    Tanabe S; Gopireddy SR; Minami H; Ando S; Urbanetz NA; Scherließ R
    Eur J Pharm Sci; 2019 Jun; 134():205-218. PubMed ID: 31034985
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulation Analysis of Concrete Pumping Based on Smooth Particle Hydrodynamics and Discrete Elements Method Coupling.
    Chen W; Wu W; Lu G; Tian G
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.