These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33922949)

  • 41. Meshfree simulations of ultrasound vector flow imaging using smoothed particle hydrodynamics.
    Shahriari S; Garcia D
    Phys Med Biol; 2018 Oct; 63(20):205011. PubMed ID: 30247153
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modulation on coherent vortex structures by dispersed solid particles in a three-dimensional mixing layer.
    Fan J; Luo K; Zheng Y; Jin H; Cen K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036309. PubMed ID: 14524892
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CFD-DEM Coupling Model for Deposition Process Analysis of Ultrafine Particles in a Micro Impinging Flow Field.
    Wang Y; Yin Z; Bao F; Shen J
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888927
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Simulation of the Attrition of Recycled Concrete Aggregates during Concrete Mixing.
    Moreno-Juez J; Tavares LM; Artoni R; Carvalho RM; da Cunha ER; Cazacliu B
    Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34206093
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CFD-DEM -DDM Model for Spray Coating Process in a Wurster Coater.
    Farivar F; Zhang H; Tian ZF; Gupte A
    J Pharm Sci; 2020 Dec; 109(12):3678-3689. PubMed ID: 33007276
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An Extended Hydro-Mechanical Coupling Model Based on Smoothed Particle Hydrodynamics for Simulating Crack Propagation in Rocks under Hydraulic and Compressive Loads.
    Mu D; Tang A; Qu H; Wang J
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837200
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Possibilities and Limits of Computational Fluid Dynamics-Discrete Element Method Simulations in Process Engineering: A Review of Recent Advancements and Future Trends.
    Kieckhefen P; Pietsch S; Dosta M; Heinrich S
    Annu Rev Chem Biomol Eng; 2020 Jun; 11():397-422. PubMed ID: 32169000
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Aggregation and clogging phenomena of rigid microparticles in microfluidics: Comparison of a discrete element method (DEM) and CFD-DEM coupling method.
    Shahzad K; Aeken WV; Mottaghi M; Kamyab VK; Kuhn S
    Microfluid Nanofluidics; 2018; 22(9):104. PubMed ID: 30393471
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Discrete particle simulations predicting mixing behavior of solid substrate particles in a rotating drum fermenter.
    Schutyser MA; Padding JT; Weber FJ; Briels WJ; Rinzema A; Boom R
    Biotechnol Bioeng; 2001 Dec; 75(6):666-75. PubMed ID: 11745144
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pairwise Force SPH Model for Real-Time Multi-Interaction Applications.
    Yang T; Martin RR; Lin MC; Chang J; Hu SM
    IEEE Trans Vis Comput Graph; 2017 Oct; 23(10):2235-2247. PubMed ID: 28541209
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A particle based model to simulate microscale morphological changes of plant tissues during drying.
    Karunasena HC; Senadeera W; Brown RJ; Gu YT
    Soft Matter; 2014 Aug; 10(29):5249-68. PubMed ID: 24740612
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Smoothed particle hydrodynamics method applied to pulsatile flow inside a rigid two-dimensional model of left heart cavity.
    Shahriari S; Kadem L; Rogers BD; Hassan I
    Int J Numer Method Biomed Eng; 2012 Nov; 28(11):1121-43. PubMed ID: 23109382
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interactive blood simulation for virtual surgery based on smoothed particle hydrodynamics.
    Müller M; Schirm S; Teschner M
    Technol Health Care; 2004; 12(1):25-31. PubMed ID: 15096684
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lattice Boltzmann-Discrete Element Modeling Simulation of SCC Flowing Process for Rock-Filled Concrete.
    Chen SG; Zhang CH; Jin F; Cao P; Sun QC; Zhou CJ
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31557868
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An alternative smooth particle hydrodynamics formulation to simulate chemotaxis in porous media.
    Avesani D; Dumbser M; Chiogna G; Bellin A
    J Math Biol; 2017 Apr; 74(5):1037-1058. PubMed ID: 27568012
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Utilizing the Discrete Element Method for the Modeling of Viscosity in Concentrated Suspensions.
    Kroupa M; Vonka M; Soos M; Kosek J
    Langmuir; 2016 Aug; 32(33):8451-60. PubMed ID: 27479150
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Particle-scale modelling of fluid velocity distribution near the particles surface in sand filtration.
    Song S; Rong L; Dong K; Liu X; Le Clech P; Shen Y
    Water Res; 2020 Jun; 177():115758. PubMed ID: 32278990
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Numerical simulation and PEPT measurements of a 3D conical helical-blade mixer: a high potential solids mixer for solid-state fermentation.
    Schutyser MA; Briels WJ; Rinzema A; Boom RM
    Biotechnol Bioeng; 2003 Oct; 84(1):29-39. PubMed ID: 12910540
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Smoothed particle hydrodynamics simulation of shear-induced powder migration in injection moulding.
    Kauzlarić D; Pastewka L; Meyer H; Heldele R; Schulz M; Weber O; Piotter V; Hausselt J; Greiner A; Korvink JG
    Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1944):2320-8. PubMed ID: 21536579
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Normal viscous force of pendular liquid bridge between two relatively moving particles.
    Washino K; Chan EL; Matsumoto T; Hashino S; Tsuji T; Tanaka T
    J Colloid Interface Sci; 2017 May; 494():255-265. PubMed ID: 28160709
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.