These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33922949)

  • 61. Modeling the progressive entrainment of bed sediment by viscous debris flows using the three-dimensional SC-HBP-SPH method.
    Han Z; Su B; Li Y; Dou J; Wang W; Zhao L
    Water Res; 2020 Sep; 182():116031. PubMed ID: 32810736
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Shear-viscosity-independent bulk-viscosity term in smoothed particle hydrodynamics.
    Avalos JB; Antuono M; Colagrossi A; Souto-Iglesias A
    Phys Rev E; 2020 Jan; 101(1-1):013302. PubMed ID: 32069568
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Calibration and Verification of Dynamic Particle Flow Parameters by the Back-Propagation Neural Network Based on the Genetic Algorithm: Recycled Polyurethane Powder.
    He P; Fan Y; Pan B; Zhu Y; Liu J; Zhu D
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31615115
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Modeling of Interior Ballistic Gas-Solid Flow Using a Coupled Computational Fluid Dynamics-Discrete Element Method.
    Cheng C; Zhang X
    J Appl Mech; 2013 May; 80(3):0314031-314036. PubMed ID: 24891728
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Mechanistic Investigation on Grinding-Induced Subvisible Particle Formation during Mixing and Filling of Monoclonal Antibody Formulations.
    Gikanga B; Hui A; Maa YF
    PDA J Pharm Sci Technol; 2018; 72(2):117-133. PubMed ID: 29030532
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Mechanistic time scales in adhesive mixing investigated by dry particle sizing.
    Nguyen D; Rasmuson A; Niklasson Björn I; Thalberg K
    Eur J Pharm Sci; 2015 Mar; 69():19-25. PubMed ID: 25576090
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Pore-scale visualization and characterization of viscous dissipation in porous media.
    Roman S; Soulaine C; Kovscek AR
    J Colloid Interface Sci; 2020 Jan; 558():269-279. PubMed ID: 31593860
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Modeling of surface tension and contact angles with smoothed particle hydrodynamics.
    Tartakovsky A; Meakin P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026301. PubMed ID: 16196705
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Organic aerosol mixing observed by single-particle mass spectrometry.
    Robinson ES; Saleh R; Donahue NM
    J Phys Chem A; 2013 Dec; 117(51):13935-45. PubMed ID: 24131283
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A mixed contact model for an immersed collision between two solid surfaces.
    Yang FL; Hunt ML
    Philos Trans A Math Phys Eng Sci; 2008 Jun; 366(1873):2205-18. PubMed ID: 18348970
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Agglomeration of wet particles in dense granular flows.
    Trung Vo T; Nezamabadi S; Mutabaruka P; Delenne JY; Izard E; Pellenq R; Radjai F
    Eur Phys J E Soft Matter; 2019 Sep; 42(9):127. PubMed ID: 31559501
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fingering instability and mixing of a blob in porous media.
    Pramanik S; Mishra M
    Phys Rev E; 2016 Oct; 94(4-1):043106. PubMed ID: 27841573
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Mixing monoclonal antibody formulations using bottom-mounted mixers: impact of mechanism and design on drug product quality.
    Gikanga B; Chen Y; Stauch OB; Maa YF
    PDA J Pharm Sci Technol; 2015; 69(2):284-96. PubMed ID: 25868994
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A mixed boundary representation to simulate the displacement of a biofluid by a biomaterial in porous media.
    Widmer RP; Ferguson SJ
    J Biomech Eng; 2011 May; 133(5):051007. PubMed ID: 21599098
    [TBL] [Abstract][Full Text] [Related]  

  • 75. SPH modelling of depth-limited turbulent open channel flows over rough boundaries.
    Kazemi E; Nichols A; Tait S; Shao S
    Int J Numer Methods Fluids; 2017 Jan; 83(1):3-27. PubMed ID: 28066121
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Computational modeling for prediction of the shear stress of three-dimensional isotropic and aligned fiber networks.
    Park S
    Comput Methods Programs Biomed; 2017 Sep; 148():91-98. PubMed ID: 28774442
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Hydrodynamically Coupled Brownian Dynamics: A coarse-grain particle-based Brownian dynamics technique with hydrodynamic interactions for modeling self-developing flow of polymer solutions.
    Ahuja VR; van der Gucht J; Briels WJ
    J Chem Phys; 2018 Jan; 148(3):034902. PubMed ID: 29352779
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Study of the Imbibition Phenomenon in Porous Media by the Smoothed Particle Hydrodynamic (SPH) Method.
    Liu J; Zhang T; Sun S
    Entropy (Basel); 2022 Aug; 24(9):. PubMed ID: 36141098
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Smoothed particle hydrodynamics: Applications to migration of radionuclides in confined aqueous systems.
    Mayoral-Villa E; Alvarado-Rodríguez CE; Klapp J; Gómez-Gesteira M; Sigalotti LD
    J Contam Hydrol; 2016 Apr; 187():65-78. PubMed ID: 26921532
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effects of powder particle size and binder viscosity on intergranular and intragranular particle size heterogeneity during high shear granulation.
    Schaefer T; Johnsen D; Johansen A
    Eur J Pharm Sci; 2004 Mar; 21(4):525-31. PubMed ID: 14998584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.