These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 33923032)

  • 1. General Patterns and Species-Specific Differences in the Organization of the Tubulin Cytoskeleton in Indeterminate Nodules of Three Legumes.
    Kitaeva AB; Gorshkov AP; Kirichek EA; Kusakin PG; Tsyganova AV; Tsyganov VE
    Cells; 2021 Apr; 10(5):. PubMed ID: 33923032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of the tubulin cytoskeleton organization in nodules of Medicago truncatula and Pisum sativum: bacterial release and bacteroid positioning correlate with characteristic microtubule rearrangements.
    Kitaeva AB; Demchenko KN; Tikhonovich IA; Timmers AC; Tsyganov VE
    New Phytol; 2016 Apr; 210(1):168-83. PubMed ID: 26682876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tubulin Cytoskeleton Organization in Cells of Determinate Nodules.
    Kitaeva AB; Gorshkov AP; Kusakin PG; Sadovskaya AR; Tsyganova AV; Tsyganov VE
    Front Plant Sci; 2022; 13():823183. PubMed ID: 35557719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular insights into bacteroid development during Rhizobium-legume symbiosis.
    Haag AF; Arnold MF; Myka KK; Kerscher B; Dall'Angelo S; Zanda M; Mergaert P; Ferguson GP
    FEMS Microbiol Rev; 2013 May; 37(3):364-83. PubMed ID: 22998605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis.
    Mergaert P; Uchiumi T; Alunni B; Evanno G; Cheron A; Catrice O; Mausset AE; Barloy-Hubler F; Galibert F; Kondorosi A; Kondorosi E
    Proc Natl Acad Sci U S A; 2006 Mar; 103(13):5230-5. PubMed ID: 16547129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What determines the efficiency of N(2)-fixing Rhizobium-legume symbioses?
    Terpolilli JJ; Hood GA; Poole PS
    Adv Microb Physiol; 2012; 60():325-89. PubMed ID: 22633062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specificity in Legume-Rhizobia Symbioses.
    Andrews M; Andrews ME
    Int J Mol Sci; 2017 Mar; 18(4):. PubMed ID: 28346361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhizobial secreted proteins as determinants of host specificity in the rhizobium-legume symbiosis.
    Fauvart M; Michiels J
    FEMS Microbiol Lett; 2008 Aug; 285(1):1-9. PubMed ID: 18616593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How inefficient rhizobia prolong their existence within nodules.
    Schumpp O; Deakin WJ
    Trends Plant Sci; 2010 Apr; 15(4):189-95. PubMed ID: 20117958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhizobial HmuS
    Huo H; Zong L; Liu Y; Chen W; Chen J; Wei G
    Plant Cell Environ; 2022 Jul; 45(7):2191-2210. PubMed ID: 35419804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the Involvement of Cytoskeletal Proteins MreB and FtsZ in the Origin of Legume-Rhizobial Symbiosis.
    Zhao W; Zhu H; Wei F; Zhou D; Li Y; Zhang XX
    Mol Plant Microbe Interact; 2021 May; 34(5):547-559. PubMed ID: 33596109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terminal bacteroid differentiation in the legume-rhizobium symbiosis: nodule-specific cysteine-rich peptides and beyond.
    Alunni B; Gourion B
    New Phytol; 2016 Jul; 211(2):411-7. PubMed ID: 27241115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversity of rhizobial and non-rhizobial bacteria nodulating wild ancestors of grain legume crop plants.
    Basbuga S; Basbuga S; Yayla F; Mahmoud AM; Can C
    Int Microbiol; 2021 May; 24(2):207-218. PubMed ID: 33423098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Phytocyanin Gene Family in Legume Plants and their Involvement in Nodulation of Medicago truncatula.
    Sun Y; Wu Z; Wang Y; Yang J; Wei G; Chou M
    Plant Cell Physiol; 2019 Apr; 60(4):900-915. PubMed ID: 30649463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of bacteroids in indeterminate nodules of the leguminous tree Leucaena glauca.
    Ishihara H; Koriyama H; Osawa A; Zehirov G; Yamaura M; Kucho K; Abe M; Higashi S; Kondorosi E; Mergaert P; Uchiumi T
    Microbes Environ; 2011; 26(2):156-9. PubMed ID: 21502734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing symbiotic efficiency between swollen versus nonswollen rhizobial bacteroids.
    Oono R; Denison RF
    Plant Physiol; 2010 Nov; 154(3):1541-8. PubMed ID: 20837702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NODULES WITH ACTIVATED DEFENSE 1 is required for maintenance of rhizobial endosymbiosis in Medicago truncatula.
    Wang C; Yu H; Luo L; Duan L; Cai L; He X; Wen J; Mysore KS; Li G; Xiao A; Duanmu D; Cao Y; Hong Z; Zhang Z
    New Phytol; 2016 Oct; 212(1):176-91. PubMed ID: 27245091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling the reproductive fate of rhizobia: how universal are legume sanctions?
    Oono R; Denison RF; Kiers ET
    New Phytol; 2009; 183(4):967-979. PubMed ID: 19594691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of natural and hybrid lectins on the legume-rhizobium interactions].
    Baĭmiev AKh; Gubaĭdullin II; Baĭmiev AKh; Cheremis AV
    Prikl Biokhim Mikrobiol; 2009; 45(1):84-91. PubMed ID: 19235514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peribacteroid space acidification: a marker of mature bacteroid functioning in Medicago truncatula nodules.
    Pierre O; Engler G; Hopkins J; Brau F; Boncompagni E; Hérouart D
    Plant Cell Environ; 2013 Nov; 36(11):2059-70. PubMed ID: 23586685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.