BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 33923132)

  • 1. The Positive Effect of ZnS in Waste Tire Carbon as Anode for Lithium-Ion Batteries.
    Wang X; Zhou L; Li J; Han N; Li X; Liu G; Jia D; Ma Z; Song G; Zhu X; Peng Z; Zhang L
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33923132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecofriendly Synthesis of Waste-Tire-Derived Graphite Nanoflakes by a Low-Temperature Electrochemical Graphitization Process toward a Silicon-Based Anode with a High-Performance Lithium-Ion Battery.
    Wu SC; Lin CW; Chang PC; Yang TY; Tang SY; Wu DC; Liao CR; Wang YC; Lee L; Yu YJ; Chueh YL
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15279-15289. PubMed ID: 36921119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Waste tire derived carbon as potential anode for lithium-ion batteries.
    Veldevi T; Raghu S; Kalaivani RA; Shanmugharaj AM
    Chemosphere; 2022 Feb; 288(Pt 1):132438. PubMed ID: 34619259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recycling of Lignin and Si Waste for Advanced Si/C Battery Anodes.
    Liu W; Liu J; Zhu M; Wang W; Wang L; Xie S; Wang L; Yang X; He X; Sun Y
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57055-57063. PubMed ID: 33290040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rubber-based carbon electrode materials derived from dumped tires for efficient sodium-ion storage.
    Wu ZY; Ma C; Bai YL; Liu YS; Wang SF; Wei X; Wang KX; Chen JS
    Dalton Trans; 2018 Apr; 47(14):4885-4892. PubMed ID: 29546260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Urchinlike ZnS Microspheres Decorated with Nitrogen-Doped Carbon: A Superior Anode Material for Lithium and Sodium Storage.
    Li J; Fu Y; Shi X; Xu Z; Zhang Z
    Chemistry; 2017 Jan; 23(1):157-166. PubMed ID: 27739614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling of photovoltaic silicon waste for high-performance porous silicon/silver/carbon/graphite anode.
    Wang L; Xi F; Zhang Z; Li S; Chen X; Wan X; Ma W; Deng R; Chong C
    Waste Manag; 2021 Aug; 132():56-63. PubMed ID: 34314949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and Preparation of Nano-porous Carbon Derived from Hemp Stems as Anode for Lithium-Ion Batteries.
    Guan Z; Guan Z; Li Z; Liu J; Yu K
    Nanoscale Res Lett; 2019 Nov; 14(1):338. PubMed ID: 31701241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance expanded graphite regenerated from spent lithium-ion batteries by integrated oxidation and purification method.
    Gong H; Xiao H; Ye L; Ou X
    Waste Manag; 2023 Sep; 171():292-302. PubMed ID: 37696171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile Synthesis of Non-Graphitizable Polypyrrole-Derived Carbon/Carbon Nanotubes for Lithium-ion Batteries.
    Jin B; Gao F; Zhu YF; Lang XY; Han GF; Gao W; Wen Z; Zhao M; Li JC; Jiang Q
    Sci Rep; 2016 Jan; 6():19317. PubMed ID: 26763296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid thermal deposited GeSe nanowires as a promising anode material for lithium-ion and sodium-ion batteries.
    Wang K; Liu M; Huang D; Li L; Feng K; Zhao L; Li J; Jiang F
    J Colloid Interface Sci; 2020 Jul; 571():387-397. PubMed ID: 32213356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen-doped porous carbon microspheres for high-rate anode material in lithium-ion batteries.
    Gao Y; Qiu X; Wang X; Chen X; Gu A; Yu Z
    Nanotechnology; 2020 Apr; 31(15):155702. PubMed ID: 31860901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superlithiated Polydopamine Derivative for High-Capacity and High-Rate Anode for Lithium-Ion Batteries.
    Dong X; Ding B; Guo H; Dou H; Zhang X
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38101-38108. PubMed ID: 30360056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green Synergy Conversion of Waste Graphite in Spent Lithium-Ion Batteries to GO and High-Performance EG Anode Material.
    Yang S; Yang G; Lan M; Zou J; Zhang X; Lai F; Xiang D; Wang H; Liu K; Li Q
    Small; 2024 May; 20(22):e2305785. PubMed ID: 38143289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-Pot Synthesis of High-Performance Tin Chalcogenides/C Anodes for Li-Ion Batteries.
    Liu X; Najam T; Yasin G; Kumar M; Wang M
    ACS Omega; 2021 Jul; 6(27):17391-17399. PubMed ID: 34278125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Low-Cost and High-Capacity SiO
    Xu M; Ma J; Niu G; Yang H; Sun M; Zhao X; Yang T; Chen L; Wang C
    ACS Omega; 2020 Jul; 5(27):16440-16447. PubMed ID: 32685807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bismuth Nanoparticles Embedded in Carbon Spheres as Anode Materials for Sodium/Lithium-Ion Batteries.
    Yang F; Yu F; Zhang Z; Zhang K; Lai Y; Li J
    Chemistry; 2016 Feb; 22(7):2333-8. PubMed ID: 26757402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-situ synthesis of Fe
    Zhang X; Gao X; Li J; Hong K; Wu L; Xu S; Zhang K; Liu C; Rao Z
    J Colloid Interface Sci; 2020 Nov; 579():699-706. PubMed ID: 32663658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and Electrochemical Properties of Amorphous Carbon Coated Sn Anode Material for Lithium Ion Batteries and Sodium Ion Batteries.
    Choi JS; Lee HJ; Ha JK; Cho KK
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6459-6462. PubMed ID: 29677814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational Construction of C@Sn/NSGr Composites as Enhanced Performance Anodes for Lithium Ion Batteries.
    Yang G; Li Y; Wang X; Zhang Z; Huang J; Zhang J; Liang X; Su J; Ouyang L; Huang J
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.