These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 33923154)

  • 1. Arbitrary-Order Finite-Time Corrections for the Kramers-Moyal Operator.
    Rydin Gorjão L; Witthaut D; Lehnertz K; Lind PG
    Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33923154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of Kramers-Moyal coefficients at low sampling rates.
    Honisch C; Friedrich R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066701. PubMed ID: 21797510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometric and projection effects in Kramers-Moyal analysis.
    Lade SJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031137. PubMed ID: 19905092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fixed mass method for the Kramers-Moyal expansion--application to time series with outliers.
    Petelczyc M; Żebrowski JJ; Orłowska-Baranowska E
    Chaos; 2015 Mar; 25(3):033115. PubMed ID: 25833437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracting stochastic governing laws by non-local Kramers-Moyal formulae.
    Lu Y; Li Y; Duan J
    Philos Trans A Math Phys Eng Sci; 2022 Aug; 380(2229):20210195. PubMed ID: 35719068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction and accuracy of partial differential equation approximations to the chemical master equation.
    Grima R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056109. PubMed ID: 22181475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Master equations and the theory of stochastic path integrals.
    Weber MF; Frey E
    Rep Prog Phys; 2017 Apr; 80(4):046601. PubMed ID: 28306551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kernel-based learning framework for discovering the governing equations of stochastic jump-diffusion processes directly from data.
    Sun W; Feng J; Su J; Guo Q
    Phys Rev E; 2023 Sep; 108(3-2):035306. PubMed ID: 37849188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kramers-Moyal coefficients in the analysis and modeling of heart rate variability.
    Petelczyc M; Zebrowski JJ; Baranowski R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031127. PubMed ID: 19905082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion in a bistable system: The eigenvalue spectrum of the Fokker-Planck operator and Kramers' reaction rate theory.
    Zhan Y; Shizgal BD
    Phys Rev E; 2019 Apr; 99(4-1):042101. PubMed ID: 31108642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis and data-driven reconstruction of bivariate jump-diffusion processes.
    Rydin Gorjão L; Heysel J; Lehnertz K; Tabar MRR
    Phys Rev E; 2019 Dec; 100(6-1):062127. PubMed ID: 31962437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Path-integral formulation of stochastic processes for exclusive particle systems.
    Park SC; Kim D; Park JM
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt A):7642-5. PubMed ID: 11138033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Markov analysis and Kramers-Moyal expansion of nonstationary stochastic processes with application to the fluctuations in the oil price.
    Ghasemi F; Sahimi M; Peinke J; Friedrich R; Jafari GR; Tabar MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):060102. PubMed ID: 17677203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral Properties of Effective Dynamics from Conditional Expectations.
    Nüske F; Koltai P; Boninsegna L; Clementi C
    Entropy (Basel); 2021 Jan; 23(2):. PubMed ID: 33494443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-sampling-rate Kramers-Moyal coefficients.
    Anteneodo C; Duarte Queirós SM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041122. PubMed ID: 21230253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arbitrary-order corrections for finite-time drift and diffusion coefficients.
    Anteneodo C; Riera R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031103. PubMed ID: 19905058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasicontinuum Fokker-Planck equation.
    Alexander FJ; Rosenau P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041902. PubMed ID: 20481748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust identification of harmonic oscillator parameters using the adjoint Fokker-Planck equation.
    Boujo E; Noiray N
    Proc Math Phys Eng Sci; 2017 Apr; 473(2200):20160894. PubMed ID: 28484333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extended Kramers-Moyal analysis applied to optical trapping.
    Honisch C; Friedrich R; Hörner F; Denz C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026702. PubMed ID: 23005877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear noise approximation is valid over limited times for any chemical system that is sufficiently large.
    Wallace EW; Gillespie DT; Sanft KR; Petzold LR
    IET Syst Biol; 2012 Aug; 6(4):102-15. PubMed ID: 23039691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.