These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33923204)

  • 1. Evaluation of Electrochemical Stability of Sulfonated Anthraquinone-Based Acidic Electrolyte for Redox Flow Battery Application.
    Mazúr P; Charvát J; Mrlík J; Pocedič J; Akrman J; Kubáč L; Řeháková B; Kosek J
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33923204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixture of Anthraquinone Sulfo-Derivatives as an Inexpensive Organic Flow Battery Negolyte: Optimization of Battery Cell.
    Petrov M; Chikin D; Abunaeva L; Glazkov A; Pichugov R; Vinyukov A; Levina I; Motyakin M; Mezhuev Y; Konev D; Antipov A
    Membranes (Basel); 2022 Sep; 12(10):. PubMed ID: 36295671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrolyte Lifetime in Aqueous Organic Redox Flow Batteries: A Critical Review.
    Kwabi DG; Ji Y; Aziz MJ
    Chem Rev; 2020 Jul; 120(14):6467-6489. PubMed ID: 32053366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic synthesis of lignin anthraquinone electrolytes for aqueous redox flow batteries.
    Jiao L; Sun M; Yang J; Yang W; Dai H
    Int J Biol Macromol; 2023 Feb; 229():236-246. PubMed ID: 36572085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UV-Vis spectrophotometry of quinone flow battery electrolyte for in situ monitoring and improved electrochemical modeling of potential and quinhydrone formation.
    Tong L; Chen Q; Wong AA; Gómez-Bombarelli R; Aspuru-Guzik A; Gordon RG; Aziz MJ
    Phys Chem Chem Phys; 2017 Dec; 19(47):31684-31691. PubMed ID: 29165500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microemulsions: Breakthrough Electrolytes for Redox Flow Batteries.
    Barth BA; Imel A; Nelms KM; Goenaga GA; Zawodzinski T
    Front Chem; 2022; 10():831200. PubMed ID: 35308789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of efficient aqueous organic redox flow batteries using ion-sieving sulfonated polymer membranes.
    Ye C; Wang A; Breakwell C; Tan R; Grazia Bezzu C; Hunter-Sellars E; Williams DR; Brandon NP; Klusener PAA; Kucernak AR; Jelfs KE; McKeown NB; Song Q
    Nat Commun; 2022 Jun; 13(1):3184. PubMed ID: 35676263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient
    Bassil P; Floner D; Guiheneuf S; Paquin L; Geneste F
    ACS Appl Mater Interfaces; 2024 Jul; 16(28):36373-36379. PubMed ID: 38979971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blatter Radicals as Bipolar Materials for Symmetrical Redox-Flow Batteries.
    Steen JS; Nuismer JL; Eiva V; Wiglema AET; Daub N; Hjelm J; Otten E
    J Am Chem Soc; 2022 Mar; 144(11):5051-5058. PubMed ID: 35258956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Family Tree for Aqueous Organic Redox Couples for Redox Flow Battery Electrolytes: A Conceptual Review.
    Fischer P; Mazúr P; Krakowiak J
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox Flow Batteries: Electrolyte Chemistries Unlock the Thermodynamic Limits.
    Chen R
    Chem Asian J; 2023 Jan; 18(1):e202201024. PubMed ID: 36367282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pH-Neutral, Metal-Free Aqueous Organic Redox Flow Battery Employing an Ammonium Anthraquinone Anolyte.
    Hu B; Luo J; Hu M; Yuan B; Liu TL
    Angew Chem Int Ed Engl; 2019 Nov; 58(46):16629-16636. PubMed ID: 31381221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding capacity fade in organic redox-flow batteries by combining spectroscopy with statistical inference techniques.
    Modak SV; Shen W; Singh S; Herrera D; Oudeif F; Goldsmith BR; Huan X; Kwabi DG
    Nat Commun; 2023 Jun; 14(1):3602. PubMed ID: 37328467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pH-Neutral, Aqueous Redox Flow Battery with a 3600-Cycle Lifetime: Micellization-Enabled High Stability and Crossover Suppression.
    Chai J; Wang X; Lashgari A; Williams CK; Jiang JJ
    ChemSusChem; 2020 Aug; 13(16):4069-4077. PubMed ID: 32658334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Molecule Redox-Targeting Reactions for a pH-Neutral Aqueous Organic Redox Flow Battery.
    Zhou M; Chen Y; Salla M; Zhang H; Wang X; Mothe SR; Wang Q
    Angew Chem Int Ed Engl; 2020 Aug; 59(34):14286-14291. PubMed ID: 32510721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic Electroactive Molecule-Based Electrolytes for Redox Flow Batteries: Status and Challenges of Molecular Design.
    Zhong F; Yang M; Ding M; Jia C
    Front Chem; 2020; 8():451. PubMed ID: 32637392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Approaches to Electrolyte Solvent Selection for Poly-Anthraquinone Sulfide Organic Electrode Material.
    Phadke S; Cao M; Anouti M
    ChemSusChem; 2018 Mar; 11(5):965-974. PubMed ID: 29205911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-Organic Redox Targeting with a Single Redox Moiety: Combining Organic Radical Batteries and Organic Redox Flow Batteries.
    Schröter E; Stolze C; Saal A; Schreyer K; Hager MD; Schubert US
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):6638-6648. PubMed ID: 35084188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poorly Soluble 2,6-Dimethoxy-9,10-anthraquinone Cathode for Lithium-Ion Batteries: The Role of Electrolyte Concentration.
    Yang J; Wang Z; Shi Y; Sun P; Xu Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7179-7185. PubMed ID: 31967452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 200-Fold Lifetime Extension of 2,6- Dihydroxyanthraquinone Electrolyte during Flow Battery Operation.
    Bahari M; Jing Y; Jin S; Goulet MA; Tsukamoto T; Gordon RG; Aziz MJ
    ACS Appl Mater Interfaces; 2024 Oct; 16(39):52144-52152. PubMed ID: 39314015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.