These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 33923215)
1. Intelligent Bone Age Assessment: An Automated System to Detect a Bone Growth Problem Using Convolutional Neural Networks with Attention Mechanism. Zulkifley MA; Mohamed NA; Abdani SR; Kamari NAM; Moubark AM; Ibrahim AA Diagnostics (Basel); 2021 Apr; 11(5):. PubMed ID: 33923215 [TBL] [Abstract][Full Text] [Related]
2. Clinical Validation of a Deep Learning-Based Hybrid (Greulich-Pyle and Modified Tanner-Whitehouse) Method for Bone Age Assessment. Lee KC; Lee KH; Kang CH; Ahn KS; Chung LY; Lee JJ; Hong SJ; Kim BH; Shim E Korean J Radiol; 2021 Dec; 22(12):2017-2025. PubMed ID: 34668353 [TBL] [Abstract][Full Text] [Related]
3. Deep learning for automated skeletal bone age assessment in X-ray images. Spampinato C; Palazzo S; Giordano D; Aldinucci M; Leonardi R Med Image Anal; 2017 Feb; 36():41-51. PubMed ID: 27816861 [TBL] [Abstract][Full Text] [Related]
4. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling. Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850 [TBL] [Abstract][Full Text] [Related]
5. Bone age estimation using deep learning and hand X-ray images. Lee JH; Kim YJ; Kim KG Biomed Eng Lett; 2020 Aug; 10(3):323-331. PubMed ID: 32850175 [TBL] [Abstract][Full Text] [Related]
6. Regression Convolutional Neural Network for Automated Pediatric Bone Age Assessment From Hand Radiograph. Ren X; Li T; Yang X; Wang S; Ahmad S; Xiang L; Stone SR; Li L; Zhan Y; Shen D; Wang Q IEEE J Biomed Health Inform; 2019 Sep; 23(5):2030-2038. PubMed ID: 30346295 [TBL] [Abstract][Full Text] [Related]
8. Skeletal bone age prediction based on a deep residual network with spatial transformer. Han Y; Wang G Comput Methods Programs Biomed; 2020 Dec; 197():105754. PubMed ID: 32957059 [TBL] [Abstract][Full Text] [Related]
9. Rethinking Greulich and Pyle: A Deep Learning Approach to Pediatric Bone Age Assessment Using Pediatric Trauma Hand Radiographs. Pan I; Baird GL; Mutasa S; Merck D; Ruzal-Shapiro C; Swenson DW; Ayyala RS Radiol Artif Intell; 2020 Jul; 2(4):e190198. PubMed ID: 33937834 [TBL] [Abstract][Full Text] [Related]
10. Bone age recognition based on mask R-CNN using xception regression model. Liu ZQ; Hu ZJ; Wu TQ; Ye GX; Tang YL; Zeng ZH; Ouyang ZM; Li YZ Front Physiol; 2023; 14():1062034. PubMed ID: 36866173 [No Abstract] [Full Text] [Related]
11. Carpal Bone Segmentation Using Fully Convolutional Neural Network. Meng LK; Khalil A; Ahmad Nizar MH; Nisham MK; Pingguan-Murphy B; Hum YC; Mohamad Salim MI; Lai KW Curr Med Imaging Rev; 2019; 15(10):983-989. PubMed ID: 32008525 [TBL] [Abstract][Full Text] [Related]
12. Automated Skeletal Bone Age Assessment with Two-Stage Convolutional Transformer Network Based on X-ray Images. Mao X; Hui Q; Zhu S; Du W; Qiu C; Ouyang X; Kong D Diagnostics (Basel); 2023 May; 13(11):. PubMed ID: 37296689 [TBL] [Abstract][Full Text] [Related]
13. A multi-scale data fusion framework for bone age assessment with convolutional neural networks. Liu Y; Zhang C; Cheng J; Chen X; Wang ZJ Comput Biol Med; 2019 May; 108():161-173. PubMed ID: 31005008 [TBL] [Abstract][Full Text] [Related]
14. A comparison of bone age assessments using automated and manual methods in children of Indian ethnicity. Oza C; Khadilkar AV; Mondkar S; Gondhalekar K; Ladkat A; Shah N; Lohiya N; Prasad HK; Patil P; Karguppikar M; Maheshwari A; Ladkat D; Kajale N; Goel P; Khadilkar V Pediatr Radiol; 2022 Oct; 52(11):2188-2196. PubMed ID: 36123410 [TBL] [Abstract][Full Text] [Related]
15. Incorporated region detection and classification using deep convolutional networks for bone age assessment. Bui TD; Lee JJ; Shin J Artif Intell Med; 2019 Jun; 97():1-8. PubMed ID: 31202395 [TBL] [Abstract][Full Text] [Related]
16. Mimicking the radiologists' workflow: Estimating pediatric hand bone age with stacked deep neural networks. Koitka S; Kim MS; Qu M; Fischer A; Friedrich CM; Nensa F Med Image Anal; 2020 Aug; 64():101743. PubMed ID: 32540698 [TBL] [Abstract][Full Text] [Related]
17. Automated Bone Age Assessment: A New Three-Stage Assessment Method from Coarse to Fine. Xu X; Xu H; Li Z Healthcare (Basel); 2022 Oct; 10(11):. PubMed ID: 36360511 [TBL] [Abstract][Full Text] [Related]
18. FELS, Greulich-Pyle, and Tanner-Whitehouse bone age assessments in a group of Italian children and adolescents. Vignolo M; Milani S; Cerbello G; Coroli P; Di Battista E; Aicardi G Am J Hum Biol; 1992; 4(4):493-500. PubMed ID: 28524393 [TBL] [Abstract][Full Text] [Related]
19. Bone Age Assessment Using Artificial Intelligence in Korean Pediatric Population: A Comparison of Deep-Learning Models Trained With Healthy Chronological and Greulich-Pyle Ages as Labels. Kim PH; Yoon HM; Kim JR; Hwang JY; Choi JH; Hwang J; Lee J; Sung J; Jung KH; Bae B; Jung AY; Cho YA; Shim WH; Bak B; Lee JS Korean J Radiol; 2023 Nov; 24(11):1151-1163. PubMed ID: 37899524 [TBL] [Abstract][Full Text] [Related]
20. The automated Greulich and Pyle: a coming-of-age for segmental methods? Chapke R; Mondkar S; Oza C; Khadilkar V; Aeppli TRJ; Sävendahl L; Kajale N; Ladkat D; Khadilkar A; Goel P Front Artif Intell; 2024; 7():1326488. PubMed ID: 38533467 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]