BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 33923270)

  • 1. Non-Contact Inspection of Railhead via Laser-Generated Rayleigh Waves and an Enhanced Matching Pursuit to Assist Detection of Surface and Subsurface Defects.
    Ghafoor I; Tse PW; Rostami J; Ng KM
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33923270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sparse and Dispersion-Based Matching Pursuit for Minimizing the Dispersion Effect Occurring when Using Guided Wave for Pipe Inspection.
    Rostami J; Tse PWT; Fang Z
    Materials (Basel); 2017 Jun; 10(6):. PubMed ID: 28772980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface circular-arc defects interacted by laser-generated Rayleigh wave.
    Zhang Z; Zhao J; Pan Y
    Ultrasonics; 2020 Apr; 103():106085. PubMed ID: 32062179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel 3D evaluation method for surface defects using broadband laser-generated Rayleigh waves with wavenumber analysis.
    Cheng Q; He J; Yang S; Xiong X; Luo Y
    Ultrasonics; 2024 Mar; 138():107258. PubMed ID: 38335921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of Rayleigh waves interaction with a spherical ball in contact with a plane surface for the development of new NDT method for ball bearings.
    Bouzzit A; Martinez L; Arciniegas A; Hebaz SE; Wilkie-Chancellier N
    Ultrasonics; 2024 Jan; 136():107156. PubMed ID: 37683365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative detection of surface defect using laser-generated Rayleigh wave with broadband local wavenumber estimation.
    He J; Liu X; Cheng Q; Yang S; Li M
    Ultrasonics; 2023 Jul; 132():106983. PubMed ID: 36944300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An alternative Rayleigh wave excitation method using an ultrasonic phased array.
    Verma B; Bélanger P
    Ultrasonics; 2023 Dec; 135():107121. PubMed ID: 37572395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-contact imaging of subsurface defects using a scanning laser source.
    Hayashi T; Mori N; Ueno T
    Ultrasonics; 2022 Feb; 119():106560. PubMed ID: 34598095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An artificial bee colony optimization based matching pursuit approach for ultrasonic echo estimation.
    Qi AL; Zhang GM; Dong M; Ma HW; Harvey DM
    Ultrasonics; 2018 Aug; 88():1-8. PubMed ID: 29525226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic Quantification of Subsurface Defects by Analyzing Laser Ultrasonic Signals Using Convolutional Neural Networks and Wavelet Transform.
    Guo S; Feng H; Feng W; Lv G; Chen D; Liu Y; Wu X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Oct; 68(10):3216-3225. PubMed ID: 34106854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remote characterization of surface slots by enhanced laser-generated ultrasonic Rayleigh waves.
    Xiao J; Chen J; Yu X; Lisevych D; Fan Z
    Ultrasonics; 2022 Feb; 119():106595. PubMed ID: 34638003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-optical laser-ultrasonic technology for width and depth gauging of rectangular surface-breaking defects.
    Chen C; Ju BF; Yang X; Wang C; Sun A; Gong J; Li Z
    Rev Sci Instrum; 2021 May; 92(5):054901. PubMed ID: 34243283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-contact ultrasonic inspection by Gas-Coupled Laser Acoustic Detection (GCLAD).
    Gulino MS; Bruzzi M; Caron JN; Vangi D
    Sci Rep; 2022 Jan; 12(1):87. PubMed ID: 34997116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Approach to Size Sub-Wavelength Surface Crack Measurements Using Rayleigh Waves Based on Laser Ultrasounds.
    Li H; Pan Q; Zhang X; An Z
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32906754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulation of nonlinear Lamb waves used in a thin plate for detecting buried micro-cracks.
    Wan X; Zhang Q; Xu G; Tse PW
    Sensors (Basel); 2014 May; 14(5):8528-46. PubMed ID: 24834908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quality inspection of micro solder joints in laser spot welding by laser ultrasonic method.
    Ding L; Lu Q; Liu S; Xu R; Yan X; Xu X; Lu M; Chen Y
    Ultrasonics; 2022 Jan; 118():106567. PubMed ID: 34521035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully noncontact inspection of closed surface crack with nonlinear laser ultrasonic testing method.
    Kou X; Pei C; Chen Z
    Ultrasonics; 2021 Jul; 114():106426. PubMed ID: 33812273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental investigation by laser ultrasonics for high speed train axle diagnostics.
    Cavuto A; Martarelli M; Pandarese G; Revel GM; Tomasini EP
    Ultrasonics; 2015 Jan; 55():48-57. PubMed ID: 25189819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of a spiral-coil EMAT for rail subsurface inspection.
    Li Y; Liu Z; Miao Y; Yuan W; Liu Z
    Ultrasonics; 2020 Dec; 108():106169. PubMed ID: 32504983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of the Acoustic Non-Linearity Parameter of Materials by Exciting Reversed-Phase Rayleigh Waves in Opposite Directions.
    Yan B; Song Y; Nie S; Yang M; Liu Z
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32244379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.