BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 33923287)

  • 1. Regulation of Cardiac PKA Signaling by cAMP and Oxidants.
    Cuello F; Herberg FW; Stathopoulou K; Henning P; Diering S
    Antioxidants (Basel); 2021 Apr; 10(5):. PubMed ID: 33923287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Receptor-independent modulation of cAMP-dependent protein kinase and protein phosphatase signaling in cardiac myocytes by oxidizing agents.
    Diering S; Stathopoulou K; Goetz M; Rathjens L; Harder S; Piasecki A; Raabe J; Schulz S; Brandt M; Pflaumenbaum J; Fuchs U; Donzelli S; Sadayappan S; Nikolaev VO; Flenner F; Ehler E; Cuello F
    J Biol Chem; 2020 Nov; 295(45):15342-15365. PubMed ID: 32868295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. beta2-adrenergic cAMP signaling is uncoupled from phosphorylation of cytoplasmic proteins in canine heart.
    Kuschel M; Zhou YY; Spurgeon HA; Bartel S; Karczewski P; Zhang SJ; Krause EG; Lakatta EG; Xiao RP
    Circulation; 1999 May; 99(18):2458-65. PubMed ID: 10318670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. cAMP-dependent Protein Kinase (PKA) Signaling Is Impaired in the Diabetic Heart.
    Bockus LB; Humphries KM
    J Biol Chem; 2015 Dec; 290(49):29250-8. PubMed ID: 26468277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PKA catalytic subunit compartmentation regulates contractile and hypertrophic responses to β-adrenergic signaling.
    Yang JH; Polanowska-Grabowska RK; Smith JS; Shields CW; Saucerman JJ
    J Mol Cell Cardiol; 2014 Jan; 66():83-93. PubMed ID: 24225179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphatidylinositol 3-kinase offsets cAMP-mediated positive inotropic effect via inhibiting Ca2+ influx in cardiomyocytes.
    Leblais V; Jo SH; Chakir K; Maltsev V; Zheng M; Crow MT; Wang W; Lakatta EG; Xiao RP
    Circ Res; 2004 Dec; 95(12):1183-90. PubMed ID: 15539636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox regulation of cAMP-dependent protein kinase signaling: kinase versus phosphatase inactivation.
    Humphries KM; Pennypacker JK; Taylor SS
    J Biol Chem; 2007 Jul; 282(30):22072-9. PubMed ID: 17548350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiomyocyte PKA Ablation Enhances Basal Contractility While Eliminates Cardiac β-Adrenergic Response Without Adverse Effects on the Heart.
    Zhang Y; Wang WE; Zhang X; Li Y; Chen B; Liu C; Ai X; Zhang X; Tian Y; Zhang C; Tang M; Szeto C; Hua X; Xie M; Zeng C; Wu Y; Zhou L; Zhu W; Yu D; Houser SR; Chen X
    Circ Res; 2019 Jun; 124(12):1760-1777. PubMed ID: 30982412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiac calcium channels expressed in Xenopus oocytes are modulated by dephosphorylation but not by cAMP-dependent phosphorylation.
    Singer-Lahat D; Lotan I; Biel M; Flockerzi V; Hofmann F; Dascal N
    Recept Channels; 1994; 2(3):215-26. PubMed ID: 7874448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Caveolae compartmentalise β2-adrenoceptor signals by curtailing cAMP production and maintaining phosphatase activity in the sarcoplasmic reticulum of the adult ventricular myocyte.
    Macdougall DA; Agarwal SR; Stopford EA; Chu H; Collins JA; Longster AL; Colyer J; Harvey RD; Calaghan S
    J Mol Cell Cardiol; 2012 Feb; 52(2):388-400. PubMed ID: 21740911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphodiesterase 4 and phosphatase 2A differentially regulate cAMP/protein kinase a signaling for cardiac myocyte contraction under stimulation of beta1 adrenergic receptor.
    De Arcangelis V; Soto D; Xiang Y
    Mol Pharmacol; 2008 Nov; 74(5):1453-62. PubMed ID: 18703669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of protein kinase A localization using a trans-activator of transcription (TAT)-conjugated A-kinase-anchoring peptide reduces cardiac function.
    Patel HH; Hamuro LL; Chun BJ; Kawaraguchi Y; Quick A; Rebolledo B; Pennypacker J; Thurston J; Rodriguez-Pinto N; Self C; Olson G; Insel PA; Giles WR; Taylor SS; Roth DM
    J Biol Chem; 2010 Sep; 285(36):27632-40. PubMed ID: 20581396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. β-Adrenergic induced SR Ca
    Pereira L; Bare DJ; Galice S; Shannon TR; Bers DM
    J Mol Cell Cardiol; 2017 Jul; 108():8-16. PubMed ID: 28476660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of cytoplasmic and nuclear protein kinase A by phosphodiesterases and phosphatases in cardiac myocytes.
    Haj Slimane Z; Bedioune I; Lechêne P; Varin A; Lefebvre F; Mateo P; Domergue-Dupont V; Dewenter M; Richter W; Conti M; El-Armouche A; Zhang J; Fischmeister R; Vandecasteele G
    Cardiovasc Res; 2014 Apr; 102(1):97-106. PubMed ID: 24550350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustained beta1-adrenergic stimulation modulates cardiac contractility by Ca2+/calmodulin kinase signaling pathway.
    Wang W; Zhu W; Wang S; Yang D; Crow MT; Xiao RP; Cheng H
    Circ Res; 2004 Oct; 95(8):798-806. PubMed ID: 15375008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Urocortin 2 stimulates nitric oxide production in ventricular myocytes via Akt- and PKA-mediated phosphorylation of eNOS at serine 1177.
    Walther S; Pluteanu F; Renz S; Nikonova Y; Maxwell JT; Yang LZ; Schmidt K; Edwards JN; Wakula P; Groschner K; Maier LS; Spiess J; Blatter LA; Pieske B; Kockskämper J
    Am J Physiol Heart Circ Physiol; 2014 Sep; 307(5):H689-700. PubMed ID: 25015964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. cAMP-stimulated protein phosphatase 2A activity associated with muscle A kinase-anchoring protein (mAKAP) signaling complexes inhibits the phosphorylation and activity of the cAMP-specific phosphodiesterase PDE4D3.
    Dodge-Kafka KL; Bauman A; Mayer N; Henson E; Heredia L; Ahn J; McAvoy T; Nairn AC; Kapiloff MS
    J Biol Chem; 2010 Apr; 285(15):11078-86. PubMed ID: 20106966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation of the cAMP-dependent protein kinase (PKA) regulatory subunit modulates PKA-AKAP interaction, substrate phosphorylation, and calcium signaling in cardiac cells.
    Manni S; Mauban JH; Ward CW; Bond M
    J Biol Chem; 2008 Aug; 283(35):24145-54. PubMed ID: 18550536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of cardiac myofilament proteins: Priming for dysfunction?
    Cuello F; Wittig I; Lorenz K; Eaton P
    Mol Aspects Med; 2018 Oct; 63():47-58. PubMed ID: 30130564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of oxidants on calcium and sodium movement in healthy and diseased cardiac myocytes.
    Sag CM; Wagner S; Maier LS
    Free Radic Biol Med; 2013 Oct; 63():338-49. PubMed ID: 23732518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.