These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
394 related articles for article (PubMed ID: 33923299)
1. Altered Metabolism in Glioblastoma: Myeloid-Derived Suppressor Cell (MDSC) Fitness and Tumor-Infiltrating Lymphocyte (TIL) Dysfunction. Di Ianni N; Musio S; Pellegatta S Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33923299 [TBL] [Abstract][Full Text] [Related]
2. Immature myeloid cells in the tumor microenvironment: Implications for immunotherapy. Kamran N; Chandran M; Lowenstein PR; Castro MG Clin Immunol; 2018 Apr; 189():34-42. PubMed ID: 27777083 [TBL] [Abstract][Full Text] [Related]
3. Tumor cell and immune cell profiles in primary human glioblastoma: Impact on patient outcome. González-Tablas Pimenta M; Otero Á; Arandia Guzman DA; Pascual-Argente D; Ruíz Martín L; Sousa-Casasnovas P; García-Martin A; Roa Montes de Oca JC; Villaseñor-Ledezma J; Torres Carretero L; Almeida M; Ortiz J; Nieto A; Orfao A; Tabernero MD Brain Pathol; 2021 Mar; 31(2):365-380. PubMed ID: 33314398 [TBL] [Abstract][Full Text] [Related]
4. Elevated levels of polymorphonuclear myeloid-derived suppressor cells in patients with glioblastoma highly express S100A8/9 and arginase and suppress T cell function. Gielen PR; Schulte BM; Kers-Rebel ED; Verrijp K; Bossman SA; Ter Laan M; Wesseling P; Adema GJ Neuro Oncol; 2016 Sep; 18(9):1253-64. PubMed ID: 27006175 [TBL] [Abstract][Full Text] [Related]
5. Explicating the Pivotal Pathogenic, Diagnostic, and Therapeutic Biomarker Potentials of Myeloid-Derived Suppressor Cells in Glioblastoma. Richard SA Dis Markers; 2020; 2020():8844313. PubMed ID: 33204365 [TBL] [Abstract][Full Text] [Related]
6. Glioblastoma Myeloid-Derived Suppressor Cell Subsets Express Differential Macrophage Migration Inhibitory Factor Receptor Profiles That Can Be Targeted to Reduce Immune Suppression. Alban TJ; Bayik D; Otvos B; Rabljenovic A; Leng L; Jia-Shiun L; Roversi G; Lauko A; Momin AA; Mohammadi AM; Peereboom DM; Ahluwalia MS; Matsuda K; Yun K; Bucala R; Vogelbaum MA; Lathia JD Front Immunol; 2020; 11():1191. PubMed ID: 32625208 [TBL] [Abstract][Full Text] [Related]
7. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. Lin H; Liu C; Hu A; Zhang D; Yang H; Mao Y J Hematol Oncol; 2024 May; 17(1):31. PubMed ID: 38720342 [TBL] [Abstract][Full Text] [Related]
8. CD4+ T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients. Dubinski D; Wölfer J; Hasselblatt M; Schneider-Hohendorf T; Bogdahn U; Stummer W; Wiendl H; Grauer OM Neuro Oncol; 2016 Jun; 18(6):807-18. PubMed ID: 26578623 [TBL] [Abstract][Full Text] [Related]
9. Global immune fingerprinting in glioblastoma patient peripheral blood reveals immune-suppression signatures associated with prognosis. Alban TJ; Alvarado AG; Sorensen MD; Bayik D; Volovetz J; Serbinowski E; Mulkearns-Hubert EE; Sinyuk M; Hale JS; Onzi GR; McGraw M; Huang P; Grabowski MM; Wathen CA; Ahluwalia MS; Radivoyevitch T; Kornblum HI; Kristensen BW; Vogelbaum MA; Lathia JD JCI Insight; 2018 Nov; 3(21):. PubMed ID: 30385717 [TBL] [Abstract][Full Text] [Related]
10. Myeloid-Derived Suppressive Cells Promote B cell-Mediated Immunosuppression via Transfer of PD-L1 in Glioblastoma. Lee-Chang C; Rashidi A; Miska J; Zhang P; Pituch KC; Hou D; Xiao T; Fischietti M; Kang SJ; Appin CL; Horbinski C; Platanias LC; Lopez-Rosas A; Han Y; Balyasnikova IV; Lesniak MS Cancer Immunol Res; 2019 Dec; 7(12):1928-1943. PubMed ID: 31530559 [TBL] [Abstract][Full Text] [Related]
13. Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells. Alissafi T; Hatzioannou A; Mintzas K; Barouni RM; Banos A; Sormendi S; Polyzos A; Xilouri M; Wielockx B; Gogas H; Verginis P J Clin Invest; 2018 Aug; 128(9):3840-3852. PubMed ID: 29920188 [TBL] [Abstract][Full Text] [Related]
14. 4-1BB Agonism Averts TIL Exhaustion and Licenses PD-1 Blockade in Glioblastoma and Other Intracranial Cancers. Woroniecka KI; Rhodin KE; Dechant C; Cui X; Chongsathidkiet P; Wilkinson D; Waibl-Polania J; Sanchez-Perez L; Fecci PE Clin Cancer Res; 2020 Mar; 26(6):1349-1358. PubMed ID: 31871298 [TBL] [Abstract][Full Text] [Related]
15. Mechanism and therapeutic potential of tumor-immune symbiosis in glioblastoma. Pang L; Khan F; Heimberger AB; Chen P Trends Cancer; 2022 Oct; 8(10):839-854. PubMed ID: 35624002 [TBL] [Abstract][Full Text] [Related]
16. T-Cell Exhaustion Signatures Vary with Tumor Type and Are Severe in Glioblastoma. Woroniecka K; Chongsathidkiet P; Rhodin K; Kemeny H; Dechant C; Farber SH; Elsamadicy AA; Cui X; Koyama S; Jackson C; Hansen LJ; Johanns TM; Sanchez-Perez L; Chandramohan V; Yu YA; Bigner DD; Giles A; Healy P; Dranoff G; Weinhold KJ; Dunn GP; Fecci PE Clin Cancer Res; 2018 Sep; 24(17):4175-4186. PubMed ID: 29437767 [No Abstract] [Full Text] [Related]
17. Immune involvement of the contralateral hemisphere in a glioblastoma mouse model. Crommentuijn MHW; Schetters STT; Dusoswa SA; Kruijssen LJW; Garcia-Vallejo JJ; van Kooyk Y J Immunother Cancer; 2020 Apr; 8(1):. PubMed ID: 32303613 [TBL] [Abstract][Full Text] [Related]
18. Obesity-Associated Myeloid-Derived Suppressor Cells Promote Apoptosis of Tumor-Infiltrating CD8 T Cells and Immunotherapy Resistance in Breast Cancer. Gibson JT; Orlandella RM; Turbitt WJ; Behring M; Manne U; Sorge RE; Norian LA Front Immunol; 2020; 11():590794. PubMed ID: 33123173 [TBL] [Abstract][Full Text] [Related]
19. Immune consequences of penfluridol treatment associated with inhibition of glioblastoma tumor growth. Ranjan A; Wright S; Srivastava SK Oncotarget; 2017 Jul; 8(29):47632-47641. PubMed ID: 28512255 [TBL] [Abstract][Full Text] [Related]
20. Metabolic Regulation of Myeloid-Derived Suppressor Cell Function in Cancer. Wang Y; Jia A; Bi Y; Wang Y; Liu G Cells; 2020 Apr; 9(4):. PubMed ID: 32325683 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]