These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33923348)

  • 1. Effect of Fillets on Mechanical Properties of Lattice Structures Fabricated Using Multi-Jet Fusion Technology.
    Nazir A; Arshad AB; Hsu CP; Jeng JY
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33923348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical Performance of Lightweight-Designed Honeycomb Structures Fabricated Using Multijet Fusion Additive Manufacturing Technology.
    Nazir A; Arshad AB; Lin SC; Jeng JY
    3D Print Addit Manuf; 2022 Aug; 9(4):311-325. PubMed ID: 36660228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of Functional Gradient Material Distribution and Patterning on Torsional Properties of Lattice Structures Manufactured Using MultiJet Fusion Technology.
    Hailu YM; Nazir A; Lin SC; Jeng JY
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34772057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of Compression and Buckling Properties of a Novel Surface-Based Lattice Structure Manufactured Using Multi Jet Fusion Technology.
    Nazir A; Ali M; Jeng JY
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34067583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supportless Lattice Structures for Energy Absorption Fabricated by Fused Deposition Modeling.
    Kumar A; Verma S; Jeng JY
    3D Print Addit Manuf; 2020 Apr; 7(2):85-96. PubMed ID: 36654760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topological and Mechanical Properties of Different Lattice Structures Based on Additive Manufacturing.
    Teng F; Sun Y; Guo S; Gao B; Yu G
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Buckling and Post-Buckling Behavior of Uniform and Variable-Density Lattice Columns Fabricated Using Additive Manufacturing.
    Nazir A; Arshad AB; Jeng JY
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31671799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design for Additive Manufacturing and Investigation of Surface-Based Lattice Structures for Buckling Properties Using Experimental and Finite Element Methods.
    Shah GJ; Nazir A; Lin SC; Jeng JY
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compressive Properties of Al-Si Alloy Lattice Structures with Three Different Unit Cells Fabricated via Laser Powder Bed Fusion.
    Liu X; Sekizawa K; Suzuki A; Takata N; Kobashi M; Yamada T
    Materials (Basel); 2020 Jun; 13(13):. PubMed ID: 32605236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design Optimization of Lattice Structures under Compression: Study of Unit Cell Types and Cell Arrangements.
    Park KM; Min KS; Roh YS
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of relative density on quasi-static and fatigue failure of lattice structures in Ti6Al4V produced by laser powder bed fusion.
    Alaña M; Cutolo A; Ruiz de Galarreta S; Van Hooreweder B
    Sci Rep; 2021 Sep; 11(1):19314. PubMed ID: 34588524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy Absorption and Stiffness of Thin and Thick-Walled Closed-Cell 3D-Printed Structures Fabricated from a Hyperelastic Soft Polymer.
    Kumar A; Collini L; Ursini C; Jeng JY
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LPBF Manufactured Functionally Graded Lattice Structures Obtained by Graded Density and Hybrid Poisson's Ratio.
    Abdelaal O; Hengsbach F; Schaper M; Hoyer KP
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigations on Mechanical Properties of Lattice Structures with Different Values of Relative Density Made from 316L by Selective Laser Melting (SLM).
    Płatek P; Sienkiewicz J; Janiszewski J; Jiang F
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32403406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy Absorption and Mechanical Performance of Functionally Graded Soft-Hard Lattice Structures.
    Rahman H; Yarali E; Zolfagharian A; Serjouei A; Bodaghi M
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33799821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comparison of Miniature Lattice Structures Produced by Material Extrusion and Vat Photopolymerization Additive Manufacturing.
    Guerra Silva R; Torres MJ; Zahr Viñuela J
    Polymers (Basel); 2021 Jun; 13(13):. PubMed ID: 34208960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design Optimization of Additive Manufactured Edgeless Simple Cubic Lattice Structures under Compression.
    Park KM; Roh YS
    Materials (Basel); 2023 Apr; 16(7):. PubMed ID: 37049164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective Mechanical Properties of AlSi7Mg Additively Manufactured Cubic Lattice Structures.
    Mantovani S; Giacalone M; Merulla A; Bassoli E; Defanti S
    3D Print Addit Manuf; 2022 Aug; 9(4):326-336. PubMed ID: 36654743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimisation of Selective Laser Melted Ti6Al4V Functionally Graded Lattice Structures Accounting for Structural Safety.
    Zhu L; Wang X; Sun L; Hu Q; Li N
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Approaches of Quasi-Static Compression Loading of SS316L Lattice Structures Made by Selective Laser Melting.
    Červinek O; Werner B; Koutný D; Vaverka O; Pantělejev L; Paloušek D
    Materials (Basel); 2021 May; 14(9):. PubMed ID: 34068584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.