These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 33923387)

  • 1. GPCR-Based Bioactive Peptide Screening Using Phage-Displayed Peptides and an Insect Cell System for Insecticide Discovery.
    Choi MY; Vander Meer RK
    Biomolecules; 2021 Apr; 11(4):. PubMed ID: 33923387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. G protein coupled receptors as targets for next generation pesticides.
    Audsley N; Down RE
    Insect Biochem Mol Biol; 2015 Dec; 67():27-37. PubMed ID: 26226649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insecticidal Effects of Receptor-Interference Isolated Bioactive Peptides on Fire Ant Colonies.
    Chinta S; Vander Meer R; O'Reilly E; Choi MY
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuropeptides and neuropeptide receptors: drug targets, and peptide and non-peptide ligands: a tribute to Prof. Dieter Seebach.
    Hoyer D; Bartfai T
    Chem Biodivers; 2012 Nov; 9(11):2367-87. PubMed ID: 23161624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. G-Protein Coupled Receptors (GPCRs) in Insects-A Potential Target for New Insecticide Development.
    Liu N; Li T; Wang Y; Liu S
    Molecules; 2021 May; 26(10):. PubMed ID: 34069969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GPCR profiling: from hits to leads and from genotype to phenotype.
    Cvijic ME; Sum CS; Alt A; Zhang L
    Drug Discov Today Technol; 2015 Nov; 18():30-7. PubMed ID: 26723890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the G-Protein-Coupled Receptor Signaling Pathway in Insecticide Resistance.
    Li T; Liu N
    Int J Mol Sci; 2019 Sep; 20(17):. PubMed ID: 31484301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening of randomly mutagenized glucagon-like peptide-1 library by using an integrated yeast-mammalian assay system.
    Shigemori T; Kuroda K; Ueda M
    J Biotechnol; 2015 Sep; 209():96-101. PubMed ID: 26087314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phage display biopanning and isolation of target-unrelated peptides: in search of nonspecific binders hidden in a combinatorial library.
    Bakhshinejad B; Zade HM; Shekarabi HS; Neman S
    Amino Acids; 2016 Dec; 48(12):2699-2716. PubMed ID: 27650972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High throughput screening (HTS) in identification new ligands and drugable targets of G protein-coupled receptors (GPCRs).
    Wang D; Li Y; Zhang Y; Liu Y; Shi G
    Comb Chem High Throughput Screen; 2012 Mar; 15(3):232-41. PubMed ID: 22221056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand Discovery for a Peptide-Binding GPCR by Structure-Based Screening of Fragment- and Lead-Like Chemical Libraries.
    Ranganathan A; Heine P; Rudling A; Plückthun A; Kummer L; Carlsson J
    ACS Chem Biol; 2017 Mar; 12(3):735-745. PubMed ID: 28032980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging Approaches to GPCR Ligand Screening for Drug Discovery.
    Kumari P; Ghosh E; Shukla AK
    Trends Mol Med; 2015 Nov; 21(11):687-701. PubMed ID: 26481827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomics, GPCRs and new targets for the control of insect pests and vectors.
    Hill CA; Sharan S; Watts VJ
    Curr Opin Insect Sci; 2018 Dec; 30():99-106. PubMed ID: 30553493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel method using Autographa californica multiple nucleopolyhedrovirus for increasing the sensitivity of insecticide through calcium influx in insect cell line.
    Licznar P; List O; Goven D; Nna RN; Lapied B; Apaire-Marchais V
    J Virol Methods; 2014 Jan; 195():72-5. PubMed ID: 24140515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insect pathogens as biological control agents: Back to the future.
    Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS
    J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylum-Spanning Neuropeptide GPCR Identification and Prioritization: Shaping Drug Target Discovery Pipelines for Nematode Parasite Control.
    Atkinson LE; McCoy CJ; Crooks BA; McKay FM; McVeigh P; McKenzie D; Irvine A; Harrington J; Rosa BA; Mitreva M; Marks NJ; Maule AG; Mousley A
    Front Endocrinol (Lausanne); 2021; 12():718363. PubMed ID: 34659113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of machine learning in GPCR bioactive ligand discovery.
    Jabeen A; Ranganathan S
    Curr Opin Struct Biol; 2019 Apr; 55():66-76. PubMed ID: 31005679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolving cryo-EM structural approaches for GPCR drug discovery.
    Zhang X; Johnson RM; Drulyte I; Yu L; Kotecha A; Danev R; Wootten D; Sexton PM; Belousoff MJ
    Structure; 2021 Sep; 29(9):963-974.e6. PubMed ID: 33957078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tools for GPCR drug discovery.
    Zhang R; Xie X
    Acta Pharmacol Sin; 2012 Mar; 33(3):372-84. PubMed ID: 22266728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Pharmacochaperone-Based High-Throughput Screening Assay for the Discovery of Chemical Probes of Orphan Receptors.
    Morfa CJ; Bassoni D; Szabo A; McAnally D; Sharir H; Hood BL; Vasile S; Wehrman T; Lamerdin J; Smith LH
    Assay Drug Dev Technol; 2018 Oct; 16(7):384-396. PubMed ID: 30251873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.