These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 33923449)

  • 1. The Characterization of a Subependymal Giant Astrocytoma-Like Cell Line from Murine Astrocyte with mTORC1 Hyperactivation.
    Tang X; Angst G; Haas M; Yang F; Wang C
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33923449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The coding and non-coding transcriptional landscape of subependymal giant cell astrocytomas.
    Bongaarts A; van Scheppingen J; Korotkov A; Mijnsbergen C; Anink JJ; Jansen FE; Spliet WGM; den Dunnen WFA; Gruber VE; Scholl T; Samueli S; Hainfellner JA; Feucht M; Kotulska K; Jozwiak S; Grajkowska W; Buccoliero AM; Caporalini C; Giordano F; Genitori L; Coras R; Blümcke I; Krsek P; Zamecnik J; Meijer L; Scicluna BP; Schouten-van Meeteren AYN; Mühlebner A; Mills JD; Aronica E
    Brain; 2020 Jan; 143(1):131-149. PubMed ID: 31834371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subependymal giant cell astrocytomas are characterized by mTORC1 hyperactivation, a very low somatic mutation rate, and a unique gene expression profile.
    Giannikou K; Zhu Z; Kim J; Winden KD; Tyburczy ME; Marron D; Parker JS; Hebert Z; Bongaarts A; Taing L; Long HW; Pisano WV; Alexandrescu S; Godlewski B; Nellist M; Kotulska K; Jozwiak S; Roszkowski M; Mandera M; Thiele EA; Lidov H; Getz G; Devinsky O; Lawrence MS; Ligon KL; Ellison DW; Sahin M; Aronica E; Meredith DM; Kwiatkowski DJ
    Mod Pathol; 2021 Feb; 34(2):264-279. PubMed ID: 33051600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuberous sclerosis complex-associated CNS abnormalities depend on hyperactivation of mTORC1 and Akt.
    Zordan P; Cominelli M; Cascino F; Tratta E; Poliani PL; Galli R
    J Clin Invest; 2018 Apr; 128(4):1688-1706. PubMed ID: 29389670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upregulation of 6-phosphofructo-2-kinase (PFKFB3) by hyperactivated mammalian target of rapamycin complex 1 is critical for tumor growth in tuberous sclerosis complex.
    Wang Y; Tang S; Wu Y; Wan X; Zhou M; Li H; Zha X
    IUBMB Life; 2020 May; 72(5):965-977. PubMed ID: 31958214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The level of microRNA 21 is upregulated by rapamycin in serum of tuberous sclerosis complex patients and subependymal giant cell astrocytoma (SEGA)-derived cell cultures.
    Kuzniewska B; Sadowski K; Urbanska K; Urbanska M; Kotulska K; Liszewska E; Grajkowska W; Jóźwiak S; Dziembowska M
    Folia Neuropathol; 2018; 56(3):167-174. PubMed ID: 30509037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation.
    Chan JA; Zhang H; Roberts PS; Jozwiak S; Wieslawa G; Lewin-Kowalik J; Kotulska K; Kwiatkowski DJ
    J Neuropathol Exp Neurol; 2004 Dec; 63(12):1236-42. PubMed ID: 15624760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Subependymal Giant Cell Astrocytoma with Tuberous Sclerosis Complex(TSC-SEGA)].
    Ichikawa T; Niida Y
    No Shinkei Geka; 2022 Jan; 50(1):111-121. PubMed ID: 35169091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of TSC1 or TSC2 mutation limited to the tumor in three cases of solitary subependymal giant cell astrocytoma using next-generation sequencing technology.
    Fohlen M; Harzallah I; Polivka M; Giuliano F; Pons L; Streichenberger N; Dorfmüller G; Touraine R
    Childs Nerv Syst; 2020 May; 36(5):961-965. PubMed ID: 32103336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A circuitry and biochemical basis for tuberous sclerosis symptoms: from epilepsy to neurocognitive deficits.
    Feliciano DM; Lin TV; Hartman NW; Bartley CM; Kubera C; Hsieh L; Lafourcade C; O'Keefe RA; Bordey A
    Int J Dev Neurosci; 2013 Nov; 31(7):667-78. PubMed ID: 23485365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TSC patient-derived isogenic neural progenitor cells reveal altered early neurodevelopmental phenotypes and rapamycin-induced MNK-eIF4E signaling.
    Martin P; Wagh V; Reis SA; Erdin S; Beauchamp RL; Shaikh G; Talkowski M; Thiele E; Sheridan SD; Haggarty SJ; Ramesh V
    Mol Autism; 2020; 11(1):2. PubMed ID: 31921404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dysregulation of the MMP/TIMP Proteolytic System in Subependymal Giant Cell Astrocytomas in Patients With Tuberous Sclerosis Complex: Modulation of MMP by MicroRNA-320d In Vitro.
    Bongaarts A; de Jong JM; Broekaart DWM; van Scheppingen J; Anink JJ; Mijnsbergen C; Jansen FE; Spliet WGM; den Dunnen WFA; Gruber VE; Scholl T; Hainfellner JA; Feucht M; Borkowska J; Kotulska K; Jozwiak S; Grajkowska W; Buccoliero AM; Caporalini C; Giordano F; Genitori L; Scicluna BP; Schouten-van Meeteren AYN; van Vliet EA; Mühlebner A; Mills JD; Aronica E
    J Neuropathol Exp Neurol; 2020 Jul; 79(7):777-790. PubMed ID: 32472129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translatome analysis of tuberous sclerosis complex 1 patient-derived neural progenitor cells reveals rapamycin-dependent and independent alterations.
    Aksoylu IS; Martin P; Robert F; Szkop KJ; Redmond NE; Bhattacharyya S; Wang J; Chen S; Beauchamp RL; Nobeli I; Pelletier J; Larsson O; Ramesh V
    Mol Autism; 2023 Oct; 14(1):39. PubMed ID: 37880800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological treatment strategies for subependymal giant cell astrocytoma (SEGA).
    Ebrahimi-Fakhari D; Franz DN
    Expert Opin Pharmacother; 2020 Aug; 21(11):1329-1336. PubMed ID: 32338549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathological Findings of a Subependymal Giant Cell Astrocytoma Following Treatment With Rapamycin.
    Cheng S; Hawkins C; Taylor MD; Bartels U
    Pediatr Neurol; 2015 Sep; 53(3):238-242.e1. PubMed ID: 26173783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TFEB activation restores migration ability to Tsc1-deficient adult neural stem/progenitor cells.
    Magini A; Polchi A; Di Meo D; Mariucci G; Sagini K; De Marco F; Cassano T; Giovagnoli S; Dolcetta D; Emiliani C
    Hum Mol Genet; 2017 Sep; 26(17):3303-3312. PubMed ID: 28637240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting the EGFR pathway: An alternative strategy for the treatment of tuberous sclerosis complex?
    Schachenhofer J; Gruber VE; Fehrer SV; Haider C; Glatter S; Liszewska E; Höftberger R; Aronica E; Rössler K; Jaworski J; Scholl T; Feucht M
    Neuropathol Appl Neurobiol; 2024 Apr; 50(2):e12974. PubMed ID: 38562027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacological inhibition of Polo-like kinase 1 (PLK1) by BI-2536 decreases the viability and survival of hamartin and tuberin deficient cells via induction of apoptosis and attenuation of autophagy.
    Valianou M; Cox AM; Pichette B; Hartley S; Paladhi UR; Astrinidis A
    Cell Cycle; 2015; 14(3):399-407. PubMed ID: 25565629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of mTOR signaling pathway in the pathogenesis of subependymal giant cell astrocytoma - A study of 28 cases.
    Kumari K; Sharma MC; Kakkar A; Malgulwar PB; Pathak P; Suri V; Sarkar C; Chandra SP; Faruq M; Gupta RK; Saran RK
    Neurol India; 2016; 64(5):988-94. PubMed ID: 27625244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subependymal giant-cell astrocytomas in the absence of tuberous sclerosis.
    Reynolds RA; Aum DJ; Gonzalez-Gomez I; Wong M; Roberts K; Dahiya S; Rodriguez LF; Roland JL; Smyth MD
    J Neurosurg Pediatr; 2023 Sep; 32(3):351-357. PubMed ID: 37327147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.