These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
392 related articles for article (PubMed ID: 33923469)
1. Sources of Inaccuracy in Photoplethysmography for Continuous Cardiovascular Monitoring. Fine J; Branan KL; Rodriguez AJ; Boonya-Ananta T; Ajmal ; Ramella-Roman JC; McShane MJ; Coté GL Biosensors (Basel); 2021 Apr; 11(4):. PubMed ID: 33923469 [TBL] [Abstract][Full Text] [Related]
2. Advances in Photoplethysmography for Personalized Cardiovascular Monitoring. Kim S; Xiao X; Chen J Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36290999 [TBL] [Abstract][Full Text] [Related]
3. Reference signal less Fourier analysis based motion artifact removal algorithm for wearable photoplethysmography devices to estimate heart rate during physical exercises. Pankaj ; Kumar A; Komaragiri R; Kumar M Comput Biol Med; 2022 Feb; 141():105081. PubMed ID: 34952340 [TBL] [Abstract][Full Text] [Related]
4. Photoplethysmographic Time-Domain Heart Rate Measurement Algorithm for Resource-Constrained Wearable Devices and its Implementation. Wójcikowski M; Pankiewicz B Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32210210 [TBL] [Abstract][Full Text] [Related]
5. A Review of Wearable Multi-Wavelength Photoplethysmography. Ray D; Collins T; Woolley S; Ponnapalli P IEEE Rev Biomed Eng; 2023; 16():136-151. PubMed ID: 34669577 [TBL] [Abstract][Full Text] [Related]
6. Wearable Systems for Home Monitoring Healthcare: The Photoplethysmography Success Pros and Cons. Lanata A Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36290998 [TBL] [Abstract][Full Text] [Related]
7. The Principles of Hearable Photoplethysmography Analysis and Applications in Physiological Monitoring-A Review. Azudin K; Gan KB; Jaafar R; Ja'afar MH Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514778 [TBL] [Abstract][Full Text] [Related]
9. Smart automated heart health monitoring using photoplethysmography signal classification. Raj R; Selvakumar J; Maik V Biomed Tech (Berl); 2021 Jun; 66(3):247-256. PubMed ID: 34062637 [TBL] [Abstract][Full Text] [Related]
10. Smartwatch Based Atrial Fibrillation Detection from Photoplethysmography Signals. Bashar SK; Han D; Ding E; Whitcomb C; McManus DD; Chon KH Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4306-4309. PubMed ID: 31946820 [TBL] [Abstract][Full Text] [Related]
11. Motion Artifact Reduction in Wearable Photoplethysmography Based on Multi-Channel Sensors with Multiple Wavelengths. Lee J; Kim M; Park HK; Kim IY Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182772 [TBL] [Abstract][Full Text] [Related]
12. Relationship between measurement site and motion artifacts in wearable reflected photoplethysmography. Maeda Y; Sekine M; Tamura T J Med Syst; 2011 Oct; 35(5):969-76. PubMed ID: 20703691 [TBL] [Abstract][Full Text] [Related]
13. Wearable Ring-Shaped Biomedical Device for Physiological Monitoring through Finger-Based Acquisition of Electrocardiographic, Photoplethysmographic, and Galvanic Skin Response Signals: Design and Preliminary Measurements. Volpes G; Valenti S; Genova G; Barà C; Parisi A; Faes L; Busacca A; Pernice R Biosensors (Basel); 2024 Apr; 14(4):. PubMed ID: 38667198 [TBL] [Abstract][Full Text] [Related]
14. Kick LL: A Smartwatch for Monitoring Respiration and Heart Rate using Photoplethysmography. Hoilett OS; Twibell AM; Srivastava R; Linnes JC Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3821-3824. PubMed ID: 30441198 [TBL] [Abstract][Full Text] [Related]
15. A Novel Time-Varying Spectral Filtering Algorithm for Reconstruction of Motion Artifact Corrupted Heart Rate Signals During Intense Physical Activities Using a Wearable Photoplethysmogram Sensor. Salehizadeh SM; Dao D; Bolkhovsky J; Cho C; Mendelson Y; Chon KH Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703618 [TBL] [Abstract][Full Text] [Related]
16. Photoplethysmography behind the Ear Outperforms Electrocardiogram for Cardiovascular Monitoring in Dynamic Environments. Bradke BS; Miller TA; Everman B Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283086 [TBL] [Abstract][Full Text] [Related]
17. Design of a Realtime Photoplethysmogram Signal Quality Checker for Wearables and Edge Computing. Banerjee T; Gavas RD; Bs M; Karmakar S; Ramakrishnan RK; Pal A Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1323-1326. PubMed ID: 36086651 [TBL] [Abstract][Full Text] [Related]
18. The 2023 wearable photoplethysmography roadmap. Charlton PH; Allen J; Bailón R; Baker S; Behar JA; Chen F; Clifford GD; Clifton DA; Davies HJ; Ding C; Ding X; Dunn J; Elgendi M; Ferdoushi M; Franklin D; Gil E; Hassan MF; Hernesniemi J; Hu X; Ji N; Khan Y; Kontaxis S; Korhonen I; Kyriacou PA; Laguna P; Lázaro J; Lee C; Levy J; Li Y; Liu C; Liu J; Lu L; Mandic DP; Marozas V; Mejía-Mejía E; Mukkamala R; Nitzan M; Pereira T; Poon CCY; Ramella-Roman JC; Saarinen H; Shandhi MMH; Shin H; Stansby G; Tamura T; Vehkaoja A; Wang WK; Zhang YT; Zhao N; Zheng D; Zhu T Physiol Meas; 2023 Nov; 44(11):. PubMed ID: 37494945 [TBL] [Abstract][Full Text] [Related]
19. Advanced Necklace for Real-Time PPG Monitoring in Drivers. Lo Grasso A; Zontone P; Rinaldo R; Affanni A Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338654 [TBL] [Abstract][Full Text] [Related]
20. SPARE: A Spectral Peak Recovery Algorithm for PPG Signals Pulsewave Reconstruction in Multimodal Wearable Devices. Masinelli G; Dell'Agnola F; Valdés AA; Atienza D Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924351 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]