These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33923874)

  • 1. Size-Dependent Alloying Ability of Immiscible W-Cu Bimetallic Nanoparticles: A Theoretical and Experimental Study.
    Zhang H; Liu T; Zhao S; Xu Z; Lv Y; Fan J; Han Y
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33923874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of an
    Zeng T; Li F; Huang Y
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-, shape- and composition-dependent alloying ability of bimetallic nanoparticles.
    Xiong S; Qi W; Huang B; Wang M
    Chemphyschem; 2011 May; 12(7):1317-24. PubMed ID: 21488140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-Solution Alloy Nanoparticles of the Immiscible Iridium-Copper System with a Wide Composition Range for Enhanced Electrocatalytic Applications.
    Wang F; Kusada K; Wu D; Yamamoto T; Toriyama T; Matsumura S; Nanba Y; Koyama M; Kitagawa H
    Angew Chem Int Ed Engl; 2018 Apr; 57(17):4505-4509. PubMed ID: 29436095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning structural motifs and alloying of bulk immiscible Mo-Cu bimetallic nanoparticles by gas-phase synthesis.
    Krishnan G; Verheijen MA; ten Brink GH; Palasantzas G; Kooi BJ
    Nanoscale; 2013 Jun; 5(12):5375-83. PubMed ID: 23652572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size-dependent morphology of dealloyed bimetallic catalysts: linking the nano to the macro scale.
    Oezaslan M; Heggen M; Strasser P
    J Am Chem Soc; 2012 Jan; 134(1):514-24. PubMed ID: 22129031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nature and Distribution of Cu and Pd Species in CuPd/TiO
    Ardila A AN; Arriola-Villaseñor E; Fuentes GA
    ACS Omega; 2020 Aug; 5(31):19497-19505. PubMed ID: 32803043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elemental (im-)miscibility determines phase formation of multinary nanoparticles co-sputtered in ionic liquids.
    Meischein M; Garzón-Manjón A; Hammerschmidt T; Xiao B; Zhang S; Abdellaoui L; Scheu C; Ludwig A
    Nanoscale Adv; 2022 Sep; 4(18):3855-3869. PubMed ID: 36133350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micron- and Nanosized Alloy Particles Made by Electric Explosion of W/Cu-Zn and W/Cu/Ni-Cr Intertwined Wires for 3D Extrusion Feedstock.
    Lerner M; Suliz K; Pervikov A; Tarasov S
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36769962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt-Ru core-shell and alloy nanoparticles.
    Alayoglu S; Zavalij P; Eichhorn B; Wang Q; Frenkel AI; Chupas P
    ACS Nano; 2009 Oct; 3(10):3127-37. PubMed ID: 19731934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skeletal Ru/Cu catalysts prepared from crystalline and quasicrystalline ternary alloy precursors: characterization by X-ray absorption spectroscopy and CO oxidation.
    Highfield J; Liu T; Loo YS; Grushko B; Borgna A
    Phys Chem Chem Phys; 2009 Feb; 11(8):1196-208. PubMed ID: 19209363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-Solution Alloying of Immiscible Ru and Cu with Enhanced CO Oxidation Activity.
    Huang B; Kobayashi H; Yamamoto T; Matsumura S; Nishida Y; Sato K; Nagaoka K; Kawaguchi S; Kubota Y; Kitagawa H
    J Am Chem Soc; 2017 Apr; 139(13):4643-4646. PubMed ID: 28338315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bimetallic (Ag)Au nanoparticles prepared by the seed growth method: two-dimensional assembling, characterization by energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, and surface enhanced raman spectroscopy, and proposed mechanism of growth.
    Srnová-Sloufová I; Vlcková B; Bastl Z; Hasslett TL
    Langmuir; 2004 Apr; 20(8):3407-15. PubMed ID: 15875875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The W alloying effect on thermal stability and hardening of nanostructured Cu-W alloyed thin films.
    Zhao JT; Zhang JY; Hou ZQ; Wu K; Feng XB; Liu G; Sun J
    Nanotechnology; 2018 May; 29(19):195705. PubMed ID: 29469813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local structures of mechanically alloyed Fe100-xCux solid solutions studied by X-ray absorption fine structure.
    Wei S; Yan W; Fan J; Li Y; Liu W; Wang X
    J Synchrotron Radiat; 2001 Mar; 8(Pt 2):770-2. PubMed ID: 11512926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overcoming immiscibility toward bimetallic catalyst library.
    Yang C; Ko BH; Hwang S; Liu Z; Yao Y; Luc W; Cui M; Malkani AS; Li T; Wang X; Dai J; Xu B; Wang G; Su D; Jiao F; Hu L
    Sci Adv; 2020 Apr; 6(17):eaaz6844. PubMed ID: 32494647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring of Anthracene Using Nanoscale Au-Cu Bimetallic Alloy Nanoparticles Synthesized with Various Compositions.
    Latif-Ur-Rahman ; Shah A; Han C; Jan AK
    ACS Omega; 2020 Sep; 5(35):22494-22501. PubMed ID: 32923808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical solid-state amorphization in the immiscible Cu-Li system.
    Sun M; Wei J; Xu Z; Huang Q; Zhao Y; Wang W; Bai X
    Sci Bull (Beijing); 2018 Sep; 63(18):1208-1214. PubMed ID: 36751090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscopic Thermodynamics.
    Qi W
    Acc Chem Res; 2016 Sep; 49(9):1587-95. PubMed ID: 27355129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemistry at single bimetallic nanoparticles - using nano impacts for sizing and compositional analysis of individual AgAu alloy nanoparticles.
    Saw EN; Grasmik V; Rurainsky C; Epple M; Tschulik K
    Faraday Discuss; 2016 Dec; 193():327-338. PubMed ID: 27711862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.