These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 33923901)
1. Proline Concentration and Its Metabolism Are Regulated in a Leaf Age Dependent Manner But Not by Abscisic Acid in Pea Plants Exposed to Cadmium Stress. Zdunek-Zastocka E; Grabowska A; Michniewska B; Orzechowski S Cells; 2021 Apr; 10(4):. PubMed ID: 33923901 [TBL] [Abstract][Full Text] [Related]
2. Cadmium Alters the Metabolism and Perception of Abscisic Acid in Zdunek-Zastocka E; Michniewska B; Pawlicka A; Grabowska A Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928288 [TBL] [Abstract][Full Text] [Related]
3. Interactive effect of 24-epibrassinolide and silicon alleviates cadmium stress via the modulation of antioxidant defense and glyoxalase systems and macronutrient content in Pisum sativum L. seedlings. Jan S; Alyemeni MN; Wijaya L; Alam P; Siddique KH; Ahmad P BMC Plant Biol; 2018 Jul; 18(1):146. PubMed ID: 30012086 [TBL] [Abstract][Full Text] [Related]
4. Analysis by virus induced gene silencing of the expression of two proline biosynthetic pathway genes in Nicotiana benthamiana under stress conditions. Ku HM; Hu CC; Chang HJ; Lin YT; Jan FJ; Chen CT Plant Physiol Biochem; 2011 Oct; 49(10):1147-54. PubMed ID: 21831656 [TBL] [Abstract][Full Text] [Related]
5. Oxidative stress induced in chloroplasts or mitochondria promotes proline accumulation in leaves of pea (Pisum sativum): another example of chloroplast-mitochondria interactions. Aswani V; Rajsheel P; Bapatla RB; Sunil B; Raghavendra AS Protoplasma; 2019 Mar; 256(2):449-457. PubMed ID: 30206687 [TBL] [Abstract][Full Text] [Related]
6. Photosynthesis and growth responses of pea Pisum sativum L. under heavy metals stress. Hattab S; Dridi B; Chouba L; Ben KM; Bousetta H J Environ Sci (China); 2009; 21(11):1552-6. PubMed ID: 20108689 [TBL] [Abstract][Full Text] [Related]
7. Transport and accumulation rates of abscisic acid and aldehyde oxidase activity in Pisum sativum L. in response to suboptimal growth conditions. Zdunek E; Lips SH J Exp Bot; 2001 Jun; 52(359):1269-76. PubMed ID: 11432945 [TBL] [Abstract][Full Text] [Related]
8. Effect of organic amendments on cadmium stress to pea: A multivariate comparison of germinating vs young seedlings and younger vs older leaves. Shamshad S; Shahid M; Rafiq M; Khalid S; Dumat C; Sabir M; Murtaza B; Farooq ABU; Shah NS Ecotoxicol Environ Saf; 2018 Apr; 151():91-97. PubMed ID: 29329098 [TBL] [Abstract][Full Text] [Related]
9. Molecular and physiological responses of Iranian Perennial ryegrass as affected by Trinexapac ethyl, Paclobutrazol and Abscisic acid under drought stress. Sheikh Mohammadi MH; Etemadi N; Arab MM; Aalifar M; Arab M; Pessarakli M Plant Physiol Biochem; 2017 Feb; 111():129-143. PubMed ID: 27915174 [TBL] [Abstract][Full Text] [Related]
11. Studies on antioxidative enzymes induced by cadmium in pea plants (Pisum sativum). Pandey N; Singh GK J Environ Biol; 2012 Mar; 33(2):201-6. PubMed ID: 23033681 [TBL] [Abstract][Full Text] [Related]
12. The cadmium-tolerant pea (Pisum sativum L.) mutant SGECdt is more sensitive to mercury: assessing plant water relations. Belimov AA; Dodd IC; Safronova VI; Malkov NV; Davies WJ; Tikhonovich IA J Exp Bot; 2015 Apr; 66(8):2359-69. PubMed ID: 25694548 [TBL] [Abstract][Full Text] [Related]
13. Antioxidant System and Biomolecules Alteration in El-Amier Y; Elhindi K; El-Hendawy S; Al-Rashed S; Abd-ElGawad A Molecules; 2019 Nov; 24(22):. PubMed ID: 31752309 [TBL] [Abstract][Full Text] [Related]
14. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Sandalio LM; Dalurzo HC; Gómez M; Romero-Puertas MC; del Río LA J Exp Bot; 2001 Nov; 52(364):2115-26. PubMed ID: 11604450 [TBL] [Abstract][Full Text] [Related]
15. Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. Rivera-Becerril F; van Tuinen D; Martin-Laurent F; Metwally A; Dietz KJ; Gianinazzi S; Gianinazzi-Pearson V Mycorrhiza; 2005 Dec; 16(1):51-60. PubMed ID: 16136340 [TBL] [Abstract][Full Text] [Related]
16. Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). Dixit V; Pandey V; Shyam R J Exp Bot; 2001 May; 52(358):1101-9. PubMed ID: 11432926 [TBL] [Abstract][Full Text] [Related]
17. Responsive modes of Medicago sativa proline dehydrogenase genes during salt stress and recovery dictate free proline accumulation. Miller G; Stein H; Honig A; Kapulnik Y; Zilberstein A Planta; 2005 Sep; 222(1):70-9. PubMed ID: 15809861 [TBL] [Abstract][Full Text] [Related]
18. Cadmium toxicity and oxidative metabolism of pea leaf peroxisomes. Romero-Puertas MC; McCarthy I; Sandalio LM; Palma JM; Corpas FJ; Gómez M; del Río LA Free Radic Res; 1999 Dec; 31 Suppl():S25-31. PubMed ID: 10694037 [TBL] [Abstract][Full Text] [Related]
19. Alterations in antioxidant enzyme activities and proline content in pea leaves under long-term drought stress. Karataş I; Öztürk L; Demir Y; Unlükara A; Kurunç A; Düzdemir O Toxicol Ind Health; 2014 Sep; 30(8):693-700. PubMed ID: 23047611 [TBL] [Abstract][Full Text] [Related]
20. Expression profiles and hormonal regulation of tobacco NtEXGT gene and its involvement in abiotic stress response. Kuluev B; Mikhaylova E; Berezhneva Z; Nikonorov Y; Postrigan B; Kudoyarova G; Chemeris A Plant Physiol Biochem; 2017 Feb; 111():203-215. PubMed ID: 27940271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]