These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Hydration and Compressive Strength of Activated Blast-Furnace Slag-Steel Slag with Na Wang Y; Jiang B; Su Y; He X; Wang Y; Oh S Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806500 [TBL] [Abstract][Full Text] [Related]
5. Fresh and Rheological Performances of Air-Entrained 3D Printable Mortars. Tarhan Y; Şahin R Materials (Basel); 2021 May; 14(9):. PubMed ID: 34063162 [TBL] [Abstract][Full Text] [Related]
6. The Effects of Partial Replacement of Ground Granulated Blast Furnace Slag by Ground Wood Ash on Alkali-Activated Binder Systems. Teker Ercan EE; Cwirzen A; Habermehl-Cwirzen K Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570053 [TBL] [Abstract][Full Text] [Related]
7. Influence of Titanium Dioxide Nanoparticles on the Sulfate Attack upon Ordinary Portland Cement and Slag-Blended Mortars. ; Qudoos A; Kim HG; Ryou JS Materials (Basel); 2018 Feb; 11(3):. PubMed ID: 29495616 [TBL] [Abstract][Full Text] [Related]
8. Experimental study on full-volume slag alkali-activated mortars: Air-cooled blast furnace slag versus machine-made sand as fine aggregates. Shi J; Tan J; Liu B; Chen J; Dai J; He Z J Hazard Mater; 2021 Feb; 403():123983. PubMed ID: 33265022 [TBL] [Abstract][Full Text] [Related]
9. Chloride Ions' Penetration of Fly Ash and Ground Granulated Blast Furnace Slags-Based Alkali-Activated Mortars. Duży P; Sitarz M; Adamczyk M; Choińska M; Hager I Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772108 [TBL] [Abstract][Full Text] [Related]
10. Influence of slag composition on the stability of steel in alkali-activated cementitious materials. Criado M; Bernal SA; Garcia-Triñanes P; Provis JL J Mater Sci; 2018; 53(7):5016-5035. PubMed ID: 31997834 [TBL] [Abstract][Full Text] [Related]
15. Alkali-Activated Binders as Sustainable Alternatives to Portland Cement and Their Resistance to Saline Water. Luga E; Mustafaraj E; Corradi M; Atiș CD Materials (Basel); 2024 Sep; 17(17):. PubMed ID: 39274798 [TBL] [Abstract][Full Text] [Related]
16. The Influence of CaO and MgO on the Mechanical Properties of Alkali-Activated Blast Furnace Slag Powder. Feng S; Zhu J; Wang R; Qu Z; Song L; Wang H Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079511 [TBL] [Abstract][Full Text] [Related]
17. Influence of the Type of Cement on the Action of the Admixture Containing Aluminum Powder. Kuziak J; Zalegowski K; Jackiewicz-Rek W; Stanisławek E Materials (Basel); 2021 May; 14(11):. PubMed ID: 34072285 [TBL] [Abstract][Full Text] [Related]
18. Property Comparison of Alkali-Activated Carbon Steel Slag (CSS) and Stainless Steel Slag (SSS) and Role of Blast Furnace Slag (BFS) Chemical Composition. Liu J; Yi C; Zhu H; Ma H Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31614483 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and Characterization of Eco-Efficient Alkali-Activated Composites with Self-Cleaning Properties for Sustainable Construction. Ślosarczyk A; Klapiszewska I; Jędrzejczak P; Jędrzejczak W; Klapiszewski Ł Molecules; 2023 Aug; 28(16):. PubMed ID: 37630317 [TBL] [Abstract][Full Text] [Related]
20. Calorimetric Studies of Alkali-Activated Blast-Furnace Slag Cements at Early Hydration Processes in the Temperature Range of 20-80 °C. Usherov-Marshak A; Vaičiukynienė D; Krivenko P; Bumanis G Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640268 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]