BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 33924098)

  • 1. Neurogranin Regulates Adult-Born Olfactory Granule Cell Spine Density and Odor-Reward Associative Memory in Mice.
    Gribaudo S; Saraulli D; Nato G; Bonzano S; Gambarotta G; Luzzati F; Costanzi M; Peretto P; Bovetti S; De Marchis S
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33924098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression and localization of the calmodulin-binding protein neurogranin in the adult mouse olfactory bulb.
    Gribaudo S; Bovetti S; Garzotto D; Fasolo A; De Marchis S
    J Comp Neurol; 2009 Dec; 517(5):683-94. PubMed ID: 19827160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Subtype of Olfactory Bulb Interneurons Is Required for Odor Detection and Discrimination Behaviors.
    Takahashi H; Ogawa Y; Yoshihara S; Asahina R; Kinoshita M; Kitano T; Kitsuki M; Tatsumi K; Okuda M; Tatsumi K; Wanaka A; Hirai H; Stern PL; Tsuboi A
    J Neurosci; 2016 Aug; 36(31):8210-27. PubMed ID: 27488640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transitory and activity-dependent expression of neurogranin in olfactory bulb tufted cells during mouse postnatal development.
    Gribaudo S; Bovetti S; Friard O; Denorme M; Oboti L; Fasolo A; De Marchis S
    J Comp Neurol; 2012 Oct; 520(14):3055-69. PubMed ID: 22592880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interneurons produced in adulthood are required for the normal functioning of the olfactory bulb network and for the execution of selected olfactory behaviors.
    Breton-Provencher V; Lemasson M; Peralta MR; Saghatelyan A
    J Neurosci; 2009 Dec; 29(48):15245-57. PubMed ID: 19955377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Olfactory learning promotes input-specific synaptic plasticity in adult-born neurons.
    Lepousez G; Nissant A; Bryant AK; Gheusi G; Greer CA; Lledo PM
    Proc Natl Acad Sci U S A; 2014 Sep; 111(38):13984-9. PubMed ID: 25189772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adult neurogenesis promotes synaptic plasticity in the olfactory bulb.
    Nissant A; Bardy C; Katagiri H; Murray K; Lledo PM
    Nat Neurosci; 2009 Jun; 12(6):728-30. PubMed ID: 19412168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CaMKIIα Expression Defines Two Functionally Distinct Populations of Granule Cells Involved in Different Types of Odor Behavior.
    Malvaut S; Gribaudo S; Hardy D; David LS; Daroles L; Labrecque S; Lebel-Cormier MA; Chaker Z; Coté D; De Koninck P; Holzenberger M; Trembleau A; Caille I; Saghatelyan A
    Curr Biol; 2017 Nov; 27(21):3315-3329.e6. PubMed ID: 29107547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Task Learning Promotes Plasticity of Interneuron Connectivity Maps in the Olfactory Bulb.
    Huang L; Ung K; Garcia I; Quast KB; Cordiner K; Saggau P; Arenkiel BR
    J Neurosci; 2016 Aug; 36(34):8856-71. PubMed ID: 27559168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental enrichment enhances neurogranin expression and hippocampal learning and memory but fails to rescue the impairments of neurogranin null mutant mice.
    Huang FL; Huang KP; Wu J; Boucheron C
    J Neurosci; 2006 Jun; 26(23):6230-7. PubMed ID: 16763030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional Specialization of Interneuron Dendrites: Identification of Action Potential Initiation Zone in Axonless Olfactory Bulb Granule Cells.
    Pressler RT; Strowbridge BW
    J Neurosci; 2019 Dec; 39(49):9674-9688. PubMed ID: 31662426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Odor preference and olfactory memory are impaired in Olfaxin-deficient mice.
    Islam S; Ueda M; Nishida E; Wang MX; Osawa M; Lee D; Itoh M; Nakagawa K; Tana ; Nakagawa T
    Brain Res; 2018 Jun; 1688():81-90. PubMed ID: 29571668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo.
    McDole B; Isgor C; Pare C; Guthrie K
    Neuroscience; 2015 Sep; 304():146-60. PubMed ID: 26211445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CPEB4-Dependent Neonate-Born Granule Cells Are Required for Olfactory Discrimination.
    Tseng CS; Chou SJ; Huang YS
    Front Behav Neurosci; 2019; 13():5. PubMed ID: 30728769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Participation of NMDA-mediated phosphorylation and oxidation of neurogranin in the regulation of Ca2+- and Ca2+/calmodulin-dependent neuronal signaling in the hippocampus.
    Wu J; Huang KP; Huang FL
    J Neurochem; 2003 Sep; 86(6):1524-33. PubMed ID: 12950461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Npas4 regulates Mdm2 and thus Dcx in experience-dependent dendritic spine development of newborn olfactory bulb interneurons.
    Yoshihara S; Takahashi H; Nishimura N; Kinoshita M; Asahina R; Kitsuki M; Tatsumi K; Furukawa-Hibi Y; Hirai H; Nagai T; Yamada K; Tsuboi A
    Cell Rep; 2014 Aug; 8(3):843-57. PubMed ID: 25088421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persistent Structural Plasticity Optimizes Sensory Information Processing in the Olfactory Bulb.
    Sailor KA; Valley MT; Wiechert MT; Riecke H; Sun GJ; Adams W; Dennis JC; Sharafi S; Ming GL; Song H; Lledo PM
    Neuron; 2016 Jul; 91(2):384-96. PubMed ID: 27373833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CCKergic Tufted Cells Differentially Drive Two Anatomically Segregated Inhibitory Circuits in the Mouse Olfactory Bulb.
    Sun X; Liu X; Starr ER; Liu S
    J Neurosci; 2020 Aug; 40(32):6189-6206. PubMed ID: 32605937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Olfactory enrichment influences adult neurogenesis modulating GAD67 and plasticity-related molecules expression in newborn cells of the olfactory bulb.
    Bovetti S; Veyrac A; Peretto P; Fasolo A; De Marchis S
    PLoS One; 2009 Jul; 4(7):e6359. PubMed ID: 19626121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postsynaptic gephyrin clustering controls the development of adult-born granule cells in the olfactory bulb.
    Deprez F; Pallotto M; Vogt F; Grabiec M; Virtanen MA; Tyagarajan SK; Panzanelli P; Fritschy JM
    J Comp Neurol; 2015 Sep; 523(13):1998-2016. PubMed ID: 25772192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.