These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 33924147)

  • 1. Genome Sequence Analysis of the Oleaginous Yeast,
    Fakankun I; Fristensky B; Levin DB
    J Fungi (Basel); 2021 Apr; 7(4):. PubMed ID: 33924147
    [No Abstract]   [Full Text] [Related]  

  • 2. Carotenoid Production in Oleaginous Yeasts.
    Kanamoto H; Nakamura K; Misawa N
    Adv Exp Med Biol; 2021; 1261():153-163. PubMed ID: 33783737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of neutral lipids and carotenoids of Rhodotorula diobovata and Rhodosporidium babjevae cultivated under nitrogen-limited conditions with glycerol as a sole carbon source.
    Peng T; Fakankun I; Levin DB
    FEMS Microbiol Lett; 2021 Oct; 368(18):. PubMed ID: 34534294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation, molecular identification of lipid-producing Rhodotorula diobovata: optimization of lipid accumulation for biodiesel production.
    Osman ME; Abdel-Razik AB; Zaki KI; Mamdouh N; El-Sayed H
    J Genet Eng Biotechnol; 2022 Feb; 20(1):32. PubMed ID: 35190920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analyses of the oleaginous and carotenogenic yeast Rhodotorula diobovata across growth phases under nitrogen- and oxygen-limited conditions.
    Fakankun I; Spicer V; Levin DB
    J Biotechnol; 2021 May; 332():11-19. PubMed ID: 33781863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomics and lipidomics analysis of the biotechnologically important oleaginous red yeast Rhodotorula glutinis ZHK provides new insights into its lipid and carotenoid metabolism.
    Li CJ; Zhao D; Cheng P; Zheng L; Yu GH
    BMC Genomics; 2020 Nov; 21(1):834. PubMed ID: 33243144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid production by yeasts growing on biodiesel-derived crude glycerol: strain selection and impact of substrate concentration on the fermentation efficiency.
    Tchakouteu SS; Kalantzi O; Gardeli C; Koutinas AA; Aggelis G; Papanikolaou S
    J Appl Microbiol; 2015 Apr; 118(4):911-27. PubMed ID: 25626733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of novel genes in the carotenogenic and oleaginous yeast Rhodotorula toruloides through genome-wide insertional mutagenesis.
    Liu Y; Koh CMJ; Yap SA; Du M; Hlaing MM; Ji L
    BMC Microbiol; 2018 Feb; 18(1):14. PubMed ID: 29466942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome sequence of the oleaginous yeast
    Sambles C; Middelhaufe S; Soanes D; Kolak D; Lux T; Moore K; Matoušková P; Parker D; Lee R; Love J; Aves SJ
    Genom Data; 2017 Sep; 13():1-2. PubMed ID: 28560168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FT-NIR: a tool for rapid intracellular lipid quantification in oleaginous yeasts.
    Chmielarz M; Sampels S; Blomqvist J; Brandenburg J; Wende F; Sandgren M; Passoth V
    Biotechnol Biofuels; 2019; 12():169. PubMed ID: 31297157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatty alcohol production in
    Wang W; Wei H; Knoshaug E; Van Wychen S; Xu Q; Himmel ME; Zhang M
    Biotechnol Biofuels; 2016; 9():227. PubMed ID: 27800013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosome-level genome assembly and transcriptome-based annotation of the oleaginous yeast Rhodotorula toruloides CBS 14.
    Martín-Hernández GC; Müller B; Chmielarz M; Brandt C; Hölzer M; Viehweger A; Passoth V
    Genomics; 2021 Nov; 113(6):4022-4027. PubMed ID: 34648882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty acids from oleaginous yeasts and yeast-like fungi and their potential applications.
    Xue SJ; Chi Z; Zhang Y; Li YF; Liu GL; Jiang H; Hu Z; Chi ZM
    Crit Rev Biotechnol; 2018 Nov; 38(7):1049-1060. PubMed ID: 29385857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing a set of strong intronic promoters for robust metabolic engineering in oleaginous Rhodotorula (Rhodosporidium) yeast species.
    Liu Y; Yap SA; Koh CM; Ji L
    Microb Cell Fact; 2016 Nov; 15(1):200. PubMed ID: 27887615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The isocitrate dehydrogenase gene of oleaginous yeast Lipomyces starkeyi is linked to lipid accumulation.
    Tang W; Zhang S; Wang Q; Tan H; Zhao ZK
    Can J Microbiol; 2009 Sep; 55(9):1062-9. PubMed ID: 19898548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion of LsSNF1 enhances lipid accumulation in the oleaginous yeast Lipomyces starkeyi.
    Sato R; Fujii Y; Ara S; Yamazaki H; Aburatani S; Ogasawara W; Takaku H
    J Biosci Bioeng; 2024 Apr; 137(4):260-267. PubMed ID: 38341331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi.
    Xu Q; Knoshaug EP; Wang W; Alahuhta M; Baker JO; Yang S; Vander Wall T; Decker SR; Himmel ME; Zhang M; Wei H
    Microb Cell Fact; 2017 Jul; 16(1):126. PubMed ID: 28738851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial lipid production from crude glycerol and hemicellulosic hydrolysate with oleaginous yeasts.
    Chmielarz M; Blomqvist J; Sampels S; Sandgren M; Passoth V
    Biotechnol Biofuels; 2021 Mar; 14(1):65. PubMed ID: 33712047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid accumulation potential of oleaginous yeasts: A comparative evaluation using food waste leachate as a substrate.
    Johnravindar D; Karthikeyan OP; Selvam A; Murugesan K; Wong JWC
    Bioresour Technol; 2018 Jan; 248(Pt A):221-228. PubMed ID: 28736146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid extract derived from newly isolated
    Kim J; Lee EJ; Lee KE; Nho YH; Ryu J; Kim SY; Yoo JK; Kang S; Seo SW
    Comput Struct Biotechnol J; 2023; 21():2009-2017. PubMed ID: 36968014
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.