These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 33924194)

  • 1. Analytical Evaluation of Signal-to-Noise Ratios for Avalanche- and Single-Photon Avalanche Diodes.
    Buchner A; Hadrath S; Burkard R; Kolb FM; Ruskowski J; Ligges M; Grabmaier A
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Gated Pinned Avalanche Photodiode Pixels for High-Speed Low-Light Imaging.
    Resetar T; De Munck K; Haspeslagh L; Rosmeulen M; Süss A; Puers R; Van Hoof C
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27537882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AlInAsSb Geiger-mode SWIR and eSWIR SPADs with high avalanche probability.
    Herrera DJ; Dadey AA; March SD; Bank SR; Campbell JC
    Opt Express; 2024 Jan; 32(2):2106-2113. PubMed ID: 38297747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Photon Avalanche Diode with Enhanced NIR-Sensitivity for Automotive LIDAR Systems.
    Takai I; Matsubara H; Soga M; Ohta M; Ogawa M; Yamashita T
    Sensors (Basel); 2016 Mar; 16(4):459. PubMed ID: 27043569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. InGaAs-GaAs Nanowire Avalanche Photodiodes Toward Single-Photon Detection in Free-Running Mode.
    Farrell AC; Meng X; Ren D; Kim H; Senanayake P; Hsieh NY; Rong Z; Chang TY; Azizur-Rahman KM; Huffaker DL
    Nano Lett; 2019 Jan; 19(1):582-590. PubMed ID: 30517782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High signal-noise ratio avalanche photodiodes with dynamic biasing technology for laser radar applications.
    Tian Y; Ding W; Feng X; Lin Z; Zhao Y
    Opt Express; 2022 Jul; 30(15):26484-26491. PubMed ID: 36236839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SPADs and SiPMs Arrays for Long-Range High-Speed Light Detection and Ranging (LiDAR).
    Villa F; Severini F; Madonini F; Zappa F
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34206130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Background Light Rejection in SPAD-Based LiDAR Sensors by Adaptive Photon Coincidence Detection.
    Beer M; Haase JF; Ruskowski J; Kokozinski R
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual anode single-photon avalanche diode for high-speed and low-noise Geiger-mode operation.
    Park C; Cho SB; Park CY; Baek S; Han SK
    Opt Express; 2019 Jun; 27(13):18201-18209. PubMed ID: 31252767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical Modelling of SPADs for Time-of-Flight LiDAR.
    Incoronato A; Locatelli M; Zappa F
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34209114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the ranging performance of chaos LiDAR.
    Hu Z; Zhu J; Jiang C; Hu T; Jiang Y; Yuan Y; Ye Z; Wang Y
    Appl Opt; 2023 May; 62(14):3598-3605. PubMed ID: 37706975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distortion losses of high-speed single-photon avalanche diode optical receivers approaching quantum sensitivity.
    Kosman J; Moore K; Haas H; Henderson RK
    Philos Trans A Math Phys Eng Sci; 2020 Apr; 378(2169):20190194. PubMed ID: 32114924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adjustable higher SNR and long-range 3D-imaging cluster lidar based on a coded full-waveform technique.
    Yang X; Hao L; Wang Y
    Appl Opt; 2019 Jun; 58(17):4671-4677. PubMed ID: 31251287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saturation effects in heterodyne detection with Geiger-mode InGaAs avalanche photodiode detector arrays.
    Luu JX; Jiang LA
    Appl Opt; 2006 Jun; 45(16):3798-804. PubMed ID: 16724140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes.
    Farrell AC; Senanayake P; Hung CH; El-Howayek G; Rajagopal A; Currie M; Hayat MM; Huffaker DL
    Sci Rep; 2015 Dec; 5():17580. PubMed ID: 26627932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced red and near infrared detection in flow cytometry using avalanche photodiodes.
    Lawrence WG; Varadi G; Entine G; Podniesinski E; Wallace PK
    Cytometry A; 2008 Aug; 73(8):767-76. PubMed ID: 18612992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing the collection efficiency of time-correlated single-photon counting with single-photon avalanche diodes using immersion lenses.
    Pichette C; Giudice A; Thibault S; Bérubé-Lauzière Y
    Appl Opt; 2016 Nov; 55(33):9555-9562. PubMed ID: 27869857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lutetium oxyorthosilicate block detector readout by avalanche photodiode arrays for high resolution animal PET.
    Pichler BJ; Swann BK; Rochelle J; Nutt RE; Cherry SR; Siegel SB
    Phys Med Biol; 2004 Sep; 49(18):4305-19. PubMed ID: 15509067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Geiger-mode APDs for PET block detector designs.
    Kolb A; Lorenz E; Judenhofer MS; Renker D; Lankes K; Pichler BJ
    Phys Med Biol; 2010 Apr; 55(7):1815-32. PubMed ID: 20208095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High performance planar germanium-on-silicon single-photon avalanche diode detectors.
    Vines P; Kuzmenko K; Kirdoda J; Dumas DCS; Mirza MM; Millar RW; Paul DJ; Buller GS
    Nat Commun; 2019 Mar; 10(1):1086. PubMed ID: 30842439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.