BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 3392424)

  • 1. Implantable helical coil microwave antenna for interstitial hyperthermia.
    Satoh T; Stauffer PR
    Int J Hyperthermia; 1988; 4(5):497-512. PubMed ID: 3392424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal distribution studies of helical coil microwave antennas for interstitial hyperthermia.
    Satoh T; Stauffer PR; Fike JR
    Int J Radiat Oncol Biol Phys; 1988 Nov; 15(5):1209-18. PubMed ID: 3182353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interstitial helical coil microwave antenna for experimental brain hyperthermia.
    Satoh T; Seilhan TM; Stauffer PR; Sneed PK; Fike JR
    Neurosurgery; 1988 Nov; 23(5):564-9. PubMed ID: 3059216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Characterization of helical coil microwave antenna for interstitial hyperthermia].
    Satoh T; Stauffer PR; Fike JR
    Gan No Rinsho; 1988 Sep; 34(11):1544-9. PubMed ID: 3184458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of heating patterns of a microwave interstitial antenna array at various insertion depths.
    Zhang Y; Joines WT; Oleson JR
    Int J Hyperthermia; 1991; 7(1):197-207. PubMed ID: 2051073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of six microwave antennas for hyperthermia treatment of cancer: sar results for single antennas and arrays.
    Ryan TP
    Int J Radiat Oncol Biol Phys; 1991 Jul; 21(2):403-13. PubMed ID: 2061117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of improved microwave interstitial antennas for local hyperthermia.
    Sathiaseelan V; Leybovich L; Emami B; Stauffer P; Straube W
    Int J Radiat Oncol Biol Phys; 1991 Mar; 20(3):531-9. PubMed ID: 1995539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional theoretical temperature distributions produced by 915 MHz dipole antenna arrays with varying insertion depths in muscle tissue.
    Mechling JA; Strohbehn JW; Ryan TP
    Int J Radiat Oncol Biol Phys; 1992; 22(1):131-8. PubMed ID: 1727110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental brain hyperthermia: techniques for heat delivery and thermometry.
    Ryan TP; Hoopes PJ; Taylor JH; Strohbehn JW; Roberts DW; Douple EB; Coughlin CT
    Int J Radiat Oncol Biol Phys; 1991 Apr; 20(4):739-50. PubMed ID: 2004950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absorbed power deposition for various insertion depths for 915 MHz interstitial dipole antenna arrays: experiment versus theory.
    Ryan TP; Mechling JA; Strohbehn JW
    Int J Radiat Oncol Biol Phys; 1990 Aug; 19(2):377-87. PubMed ID: 2394617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of insertion depth on the theoretical SAR patterns of 915 MHz dipole antenna arrays for hyperthermia.
    James BJ; Strohbehn JW; Mechling JA; Trembly BS
    Int J Hyperthermia; 1989; 5(6):733-47. PubMed ID: 2592787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation into the thermal distribution of microwave helical antennas designed for the treatment of Barrett's oesophagus.
    Reeves J; Birch M; Munro K; Collier R
    Phys Med Biol; 2002 Oct; 47(19):3557-64. PubMed ID: 12408482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-slot antennas for microwave tissue heating: parametric design analysis and experimental validation.
    Brace CL
    Med Phys; 2011 Jul; 38(7):4232-40. PubMed ID: 21859025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of insertion depth on helical antenna performance in a muscle-equivalent phantom.
    Reeves JW; Meeson S; Birch MJ
    Phys Med Biol; 2005 Jun; 50(12):2955-65. PubMed ID: 15930613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Research on the hyperthermia-therapy performances of invasive microwave antennas].
    Yang GS; Liu YH; Wang JQ
    Zhongguo Yi Liao Qi Xie Za Zhi; 2002 Mar; 26(3):170-1, 217. PubMed ID: 16104297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The characterization of semirigid coaxial antennae for interstitial and endocavitary microwave hyperthermia].
    Erb J; Klautke G; Seegenschmiedt HM; Engelbrecht R; Schaller G; Sauer R
    Strahlenther Onkol; 1994 Nov; 170(11):654-64. PubMed ID: 7974181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional theoretical SAR and temperature distributions created in brain tissue by 915 and 2450 MHz dipole antenna arrays with varying insertion depths.
    Mechling JA; Strohbehn JW
    Int J Hyperthermia; 1992; 8(4):529-42. PubMed ID: 1402132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SAR distributions in interstitial microwave antenna arrays with a single dipole displacement.
    Clibbon KL; McCowen A; Hand JW
    IEEE Trans Biomed Eng; 1993 Sep; 40(9):925-32. PubMed ID: 8288284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical limits of SAR distributions of a four-element square array of dipole-type antennas.
    Fan CJ; Leybovich LB; Devanna WG; Kurup RG
    Med Phys; 1994 Nov; 21(11):1665-70. PubMed ID: 7891625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A theoretical model for input impedance of interstitial microwave antennas with choke.
    Wong TZ; Trembly BS
    Int J Radiat Oncol Biol Phys; 1994 Feb; 28(3):673-82. PubMed ID: 8113111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.