These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33924337)

  • 1. Time-Efficient Convolutional Neural Network-Assisted Brillouin Optical Frequency Domain Analysis.
    Karapanagiotis C; Wosniok A; Hicke K; Krebber K
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Approaches in Brillouin Distributed Fiber Optic Sensors.
    Karapanagiotis C; Krebber K
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37448034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Denoising of BOTDR Dynamic Strain Measurement Using Convolutional Neural Networks.
    Li B; Jiang N; Han X
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning assisted BOFDA for simultaneous temperature and strain sensing in a standard optical fiber.
    Karapanagiotis C; Hicke K; Krebber K
    Opt Express; 2023 Jan; 31(3):5027-5041. PubMed ID: 36785455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavelet convolutional neural network for robust and fast temperature measurements in Brillouin optical time domain reflectometry.
    Chen B; Su L; Zhang Z; Liu X; Dai T; Song M; Yu H; Wang Y; Yang J
    Opt Express; 2022 Apr; 30(9):13942-13958. PubMed ID: 35473148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 100-km BOFDA Assisted by First-Order Bi-Directional Raman Amplification.
    Kapa T; Schreier A; Krebber K
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 63 km BOFDA for Temperature and Strain Monitoring.
    Kapa T; Schreier A; Krebber K
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29772807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distributed humidity fiber-optic sensor based on BOFDA using a simple machine learning approach.
    Karapanagiotis C; Hicke K; Wosniok A; Krebber K
    Opt Express; 2022 Apr; 30(8):12484-12494. PubMed ID: 35472883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural network-assisted signal processing in Brillouin optical correlation-domain sensing for potential high-speed implementation.
    Yao Y; Mizuno Y
    Opt Express; 2021 Oct; 29(22):35474-35489. PubMed ID: 34808980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust Vector BOTDA Signal Processing with Probabilistic Machine Learning.
    Venketeswaran A; Lalam N; Lu P; Bukka SR; Buric MP; Wright R
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated denoising and extraction of both temperature and strain based on a single CNN framework for a BOTDA sensing system.
    Yang G; Zeng K; Wang L; Tang M; Liu D
    Opt Express; 2022 Sep; 30(19):34453-34467. PubMed ID: 36242457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benefits of Spectral Property Engineering in Distributed Brillouin Fiber Sensing.
    Feng C; Schneider T
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Support vector machine assisted BOTDA utilizing combined Brillouin gain and phase information for enhanced sensing accuracy.
    Wu H; Wang L; Guo N; Shu C; Lu C
    Opt Express; 2017 Dec; 25(25):31210-31220. PubMed ID: 29245798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical Fiber Sensing Cables for Brillouin-Based Distributed Measurements.
    Bastianini F; Di Sante R; Falcetelli F; Marini D; Bolognini G
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31779144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signal processing using artificial neural network for BOTDA sensor system.
    Azad AK; Wang L; Guo N; Tam HY; Lu C
    Opt Express; 2016 Mar; 24(6):6769-82. PubMed ID: 27136863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sparse representation of Brillouin spectrum using dictionary learning.
    Tan H; Wu H; Shen L; Zhao C; Li K; Zhang M; Fu S; Tang M
    Opt Express; 2020 Jun; 28(12):18160-18171. PubMed ID: 32680017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances in Brillouin Optical Time Domain Reflectometry.
    Bai Q; Wang Q; Wang D; Wang Y; Gao Y; Zhang H; Zhang M; Jin B
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31003510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid BOFDA/BOCDA system for distributed static and dynamic strain measurements.
    Vallifuoco R; Zeni L; Minardo A
    Opt Lett; 2024 May; 49(9):2409-2412. PubMed ID: 38691731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [A Brillouin Scattering Spectrum Feature Extraction Based on Flies Optimization Algorithm with Adaptive Mutation and Generalized Regression Neural Network].
    Zhang YJ; Liu WZ; Fu XH; Bi WH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Oct; 35(10):2916-23. PubMed ID: 26904844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review: distributed time-domain sensors based on Brillouin scattering and FWM enhanced SBS for temperature, strain and acoustic wave detection.
    Bao X; Zhou Z; Wang Y
    Photonix; 2021; 2(1):14. PubMed ID: 34841256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.