These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
337 related articles for article (PubMed ID: 33924351)
1. SPARE: A Spectral Peak Recovery Algorithm for PPG Signals Pulsewave Reconstruction in Multimodal Wearable Devices. Masinelli G; Dell'Agnola F; Valdés AA; Atienza D Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924351 [TBL] [Abstract][Full Text] [Related]
2. Reference signal less Fourier analysis based motion artifact removal algorithm for wearable photoplethysmography devices to estimate heart rate during physical exercises. Pankaj ; Kumar A; Komaragiri R; Kumar M Comput Biol Med; 2022 Feb; 141():105081. PubMed ID: 34952340 [TBL] [Abstract][Full Text] [Related]
3. A Novel Time-Varying Spectral Filtering Algorithm for Reconstruction of Motion Artifact Corrupted Heart Rate Signals During Intense Physical Activities Using a Wearable Photoplethysmogram Sensor. Salehizadeh SM; Dao D; Bolkhovsky J; Cho C; Mendelson Y; Chon KH Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703618 [TBL] [Abstract][Full Text] [Related]
4. Photoplethysmographic Time-Domain Heart Rate Measurement Algorithm for Resource-Constrained Wearable Devices and its Implementation. Wójcikowski M; Pankiewicz B Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32210210 [TBL] [Abstract][Full Text] [Related]
5. Smartwatch Based Atrial Fibrillation Detection from Photoplethysmography Signals. Bashar SK; Han D; Ding E; Whitcomb C; McManus DD; Chon KH Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4306-4309. PubMed ID: 31946820 [TBL] [Abstract][Full Text] [Related]
6. A novel method for accurate estimation of HRV from smartwatch PPG signals. Bhowmik T; Dey J; Tiwari VN Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():109-112. PubMed ID: 29059822 [TBL] [Abstract][Full Text] [Related]
7. SPECMAR: fast heart rate estimation from PPG signal using a modified spectral subtraction scheme with composite motion artifacts reference generation. Islam MT; Ahmed ST; Shahnaz C; Fattah SA Med Biol Eng Comput; 2019 Mar; 57(3):689-702. PubMed ID: 30349957 [TBL] [Abstract][Full Text] [Related]
8. A Robust Motion Artifact Detection Algorithm for Accurate Detection of Heart Rates From Photoplethysmographic Signals Using Time-Frequency Spectral Features. Dao D; Salehizadeh SMA; Noh Y; Chong JW; Cho CH; McManus D; Darling CE; Mendelson Y; Chon KH IEEE J Biomed Health Inform; 2017 Sep; 21(5):1242-1253. PubMed ID: 28113791 [TBL] [Abstract][Full Text] [Related]
9. PPG Signal Reconstruction Using Deep Convolutional Generative Adversarial Network. Wang Y; Azimi I; Kazemi K; Rahmani AM; Liljeberg P Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3387-3391. PubMed ID: 36086184 [TBL] [Abstract][Full Text] [Related]
10. A Robust Random Forest-Based Approach for Heart Rate Monitoring Using Photoplethysmography Signal Contaminated by Intense Motion Artifacts. Ye Y; He W; Cheng Y; Huang W; Zhang Z Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28212327 [TBL] [Abstract][Full Text] [Related]
11. Robust Beat-to-Beat Interval from Wearable PPG using RLS and SSA. Bhattacharjee T; Choudhury AD; Pal A Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4946-4952. PubMed ID: 31946970 [TBL] [Abstract][Full Text] [Related]
12. A comb filter based signal processing method to effectively reduce motion artifacts from photoplethysmographic signals. Peng F; Liu H; Wang W Physiol Meas; 2015 Oct; 36(10):2159-70. PubMed ID: 26334000 [TBL] [Abstract][Full Text] [Related]
13. Heart Rate Estimation using PPG signal during Treadmill Exercise. Kong Y; Chon K Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3253-3256. PubMed ID: 31946579 [TBL] [Abstract][Full Text] [Related]
14. Motion Artifact Reduction in Wearable Photoplethysmography Based on Multi-Channel Sensors with Multiple Wavelengths. Lee J; Kim M; Park HK; Kim IY Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182772 [TBL] [Abstract][Full Text] [Related]
15. Finite State Machine Framework for Instantaneous Heart Rate Validation Using Wearable Photoplethysmography During Intensive Exercise. Chung H; Lee H; Lee J IEEE J Biomed Health Inform; 2019 Jul; 23(4):1595-1606. PubMed ID: 30235152 [TBL] [Abstract][Full Text] [Related]
16. Real-Time Robust Heart Rate Estimation From Wrist-Type PPG Signals Using Multiple Reference Adaptive Noise Cancellation. Chowdhury SS; Hyder R; Hafiz MSB; Haque MA IEEE J Biomed Health Inform; 2018 Mar; 22(2):450-459. PubMed ID: 27893403 [TBL] [Abstract][Full Text] [Related]
17. Multiple time and spectral analysis techniques for comparing the PhotoPlethysmography to PiezoelectricPlethysmography with electrocardiography. Alqudah AM; Qananwah Q; M K Dagamseh A; Qazan S; Albadarneh A; Alzyout A Med Hypotheses; 2020 Oct; 143():109870. PubMed ID: 32470788 [TBL] [Abstract][Full Text] [Related]
18. Feasibility Study of Deep Neural Network for Heart Rate Estimation from Wearable Photoplethysmography and Acceleration Signals. Chung H; Ko H; Lee H; Lee J Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3633-3636. PubMed ID: 31946663 [TBL] [Abstract][Full Text] [Related]
19. Robust Heart Rate Estimation During Physical Exercise Using Photoplethysmographic Signals. Motin MA; Karmakar CK; Palaniswami M Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():494-497. PubMed ID: 30440442 [TBL] [Abstract][Full Text] [Related]
20. A Robust Dynamic Heart-Rate Detection Algorithm Framework During Intense Physical Activities Using Photoplethysmographic Signals. Song J; Li D; Ma X; Teng G; Wei J Sensors (Basel); 2017 Oct; 17(11):. PubMed ID: 29068403 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]