BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 33924351)

  • 1. SPARE: A Spectral Peak Recovery Algorithm for PPG Signals Pulsewave Reconstruction in Multimodal Wearable Devices.
    Masinelli G; Dell'Agnola F; Valdés AA; Atienza D
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reference signal less Fourier analysis based motion artifact removal algorithm for wearable photoplethysmography devices to estimate heart rate during physical exercises.
    Pankaj ; Kumar A; Komaragiri R; Kumar M
    Comput Biol Med; 2022 Feb; 141():105081. PubMed ID: 34952340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Time-Varying Spectral Filtering Algorithm for Reconstruction of Motion Artifact Corrupted Heart Rate Signals During Intense Physical Activities Using a Wearable Photoplethysmogram Sensor.
    Salehizadeh SM; Dao D; Bolkhovsky J; Cho C; Mendelson Y; Chon KH
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoplethysmographic Time-Domain Heart Rate Measurement Algorithm for Resource-Constrained Wearable Devices and its Implementation.
    Wójcikowski M; Pankiewicz B
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32210210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smartwatch Based Atrial Fibrillation Detection from Photoplethysmography Signals.
    Bashar SK; Han D; Ding E; Whitcomb C; McManus DD; Chon KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4306-4309. PubMed ID: 31946820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel method for accurate estimation of HRV from smartwatch PPG signals.
    Bhowmik T; Dey J; Tiwari VN
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():109-112. PubMed ID: 29059822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SPECMAR: fast heart rate estimation from PPG signal using a modified spectral subtraction scheme with composite motion artifacts reference generation.
    Islam MT; Ahmed ST; Shahnaz C; Fattah SA
    Med Biol Eng Comput; 2019 Mar; 57(3):689-702. PubMed ID: 30349957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Robust Motion Artifact Detection Algorithm for Accurate Detection of Heart Rates From Photoplethysmographic Signals Using Time-Frequency Spectral Features.
    Dao D; Salehizadeh SMA; Noh Y; Chong JW; Cho CH; McManus D; Darling CE; Mendelson Y; Chon KH
    IEEE J Biomed Health Inform; 2017 Sep; 21(5):1242-1253. PubMed ID: 28113791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PPG Signal Reconstruction Using Deep Convolutional Generative Adversarial Network.
    Wang Y; Azimi I; Kazemi K; Rahmani AM; Liljeberg P
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3387-3391. PubMed ID: 36086184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Robust Random Forest-Based Approach for Heart Rate Monitoring Using Photoplethysmography Signal Contaminated by Intense Motion Artifacts.
    Ye Y; He W; Cheng Y; Huang W; Zhang Z
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28212327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust Beat-to-Beat Interval from Wearable PPG using RLS and SSA.
    Bhattacharjee T; Choudhury AD; Pal A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4946-4952. PubMed ID: 31946970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comb filter based signal processing method to effectively reduce motion artifacts from photoplethysmographic signals.
    Peng F; Liu H; Wang W
    Physiol Meas; 2015 Oct; 36(10):2159-70. PubMed ID: 26334000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heart Rate Estimation using PPG signal during Treadmill Exercise.
    Kong Y; Chon K
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3253-3256. PubMed ID: 31946579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motion Artifact Reduction in Wearable Photoplethysmography Based on Multi-Channel Sensors with Multiple Wavelengths.
    Lee J; Kim M; Park HK; Kim IY
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite State Machine Framework for Instantaneous Heart Rate Validation Using Wearable Photoplethysmography During Intensive Exercise.
    Chung H; Lee H; Lee J
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1595-1606. PubMed ID: 30235152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-Time Robust Heart Rate Estimation From Wrist-Type PPG Signals Using Multiple Reference Adaptive Noise Cancellation.
    Chowdhury SS; Hyder R; Hafiz MSB; Haque MA
    IEEE J Biomed Health Inform; 2018 Mar; 22(2):450-459. PubMed ID: 27893403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple time and spectral analysis techniques for comparing the PhotoPlethysmography to PiezoelectricPlethysmography with electrocardiography.
    Alqudah AM; Qananwah Q; M K Dagamseh A; Qazan S; Albadarneh A; Alzyout A
    Med Hypotheses; 2020 Oct; 143():109870. PubMed ID: 32470788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility Study of Deep Neural Network for Heart Rate Estimation from Wearable Photoplethysmography and Acceleration Signals.
    Chung H; Ko H; Lee H; Lee J
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3633-3636. PubMed ID: 31946663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust Heart Rate Estimation During Physical Exercise Using Photoplethysmographic Signals.
    Motin MA; Karmakar CK; Palaniswami M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():494-497. PubMed ID: 30440442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Robust Dynamic Heart-Rate Detection Algorithm Framework During Intense Physical Activities Using Photoplethysmographic Signals.
    Song J; Li D; Ma X; Teng G; Wei J
    Sensors (Basel); 2017 Oct; 17(11):. PubMed ID: 29068403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.