These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV. de Oliveira DC; Wehrmeister MA Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002290 [TBL] [Abstract][Full Text] [Related]
7. Robotic System for Inspection by Contact of Bridge Beams Using UAVs. Sanchez-Cuevas PJ; Ramon-Soria P; Arrue B; Ollero A; Heredia G Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30646535 [TBL] [Abstract][Full Text] [Related]
8. Experimental Characterization of Composite-Printed Materials for the Production of Multirotor UAV Airframe Parts. Šančić T; Brčić M; Kotarski D; Łukaszewicz A Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512334 [TBL] [Abstract][Full Text] [Related]
9. Vision-Based Target Finding and Inspection of a Ground Target Using a Multirotor UAV System. Hinas A; Roberts JM; Gonzalez F Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29258211 [TBL] [Abstract][Full Text] [Related]
10. Airborne Visual Detection and Tracking of Cooperative UAVs Exploiting Deep Learning. Opromolla R; Inchingolo G; Fasano G Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31591368 [TBL] [Abstract][Full Text] [Related]
11. An Augmented Reality Visualization System for Simulated Multirotor Aerial Vehicles. Moura ÉA; Góes LCS; Silva RGAD; Paula AA An Acad Bras Cienc; 2024; 96(1):e20220822. PubMed ID: 38808808 [TBL] [Abstract][Full Text] [Related]
12. A Semi-Physical Platform for Guidance and Formations of Fixed-Wing Unmanned Aerial Vehicles. Yang J; Thomas AG; Singh S; Baldi S; Wang X Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32093021 [TBL] [Abstract][Full Text] [Related]
13. Improvement of Hexacopter UAVs Attitude Parameters Employing Control and Decision Support Systems. Stamate MA; Pupăză C; Nicolescu FA; Moldoveanu CE Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772493 [TBL] [Abstract][Full Text] [Related]
14. Biological control technology and application based on agricultural unmanned aerial vehicle (UAV) intelligent delivery of insect natural enemies (Trichogramma) carrier. Zhan Y; Chen S; Wang G; Fu J; Lan Y Pest Manag Sci; 2021 Jul; 77(7):3259-3272. PubMed ID: 33759315 [TBL] [Abstract][Full Text] [Related]
15. Behaviour reactions of bottlenose dolphins (Tursiops truncatus) to multirotor Unmanned Aerial Vehicles (UAVs). Fettermann T; Fiori L; Bader M; Doshi A; Breen D; Stockin KA; Bollard B Sci Rep; 2019 Jun; 9(1):8558. PubMed ID: 31189946 [TBL] [Abstract][Full Text] [Related]
16. Modeling and optimization of multiple unmanned aerial vehicles system architecture alternatives. Qin D; Li Z; Yang F; Wang W; He L ScientificWorldJournal; 2014; 2014():189679. PubMed ID: 25140328 [TBL] [Abstract][Full Text] [Related]
17. Frontier Progress of Unmanned Aerial Vehicles Optical Wireless Technologies. Ding J; Mei H; I CL; Zhang H; Liu W Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32987883 [TBL] [Abstract][Full Text] [Related]
18. Development of Radio-Frequency Sensor Wake-Up with Unmanned Aerial Vehicles as an Aerial Gateway. Chen J; Dai Z; Chen Z Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30823681 [TBL] [Abstract][Full Text] [Related]
19. Developing a Modular Unmanned Aerial Vehicle (UAV) Platform for Air Pollution Profiling. Gu Q; R Michanowicz D; Jia C Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544691 [TBL] [Abstract][Full Text] [Related]
20. Coverage Path Planning Methods Focusing on Energy Efficient and Cooperative Strategies for Unmanned Aerial Vehicles. Fevgas G; Lagkas T; Argyriou V; Sarigiannidis P Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161979 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]