These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 33924495)
41. Design and Implementation of a UAV-Based Airborne Computing Platform for Computer Vision and Machine Learning Applications. Douklias A; Karagiannidis L; Misichroni F; Amditis A Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271196 [TBL] [Abstract][Full Text] [Related]
42. A meta-analysis of human-system interfaces in unmanned aerial vehicle (UAV) swarm management. Hocraffer A; Nam CS Appl Ergon; 2017 Jan; 58():66-80. PubMed ID: 27633199 [TBL] [Abstract][Full Text] [Related]
43. A Precise and GNSS-Free Landing System on Moving Platforms for Rotary-Wing UAVs. Alarcón F; García M; Maza I; Viguria A; Ollero A Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791638 [TBL] [Abstract][Full Text] [Related]
44. From the Eye of the Storm: An IoT Ecosystem Made of Sensors, Smartphones and UAVs. Erdelj M; Uk B; Konam D; Natalizio E Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30405046 [TBL] [Abstract][Full Text] [Related]
45. UAV Autonomous Tracking and Landing Based on Deep Reinforcement Learning Strategy. Xie J; Peng X; Wang H; Niu W; Zheng X Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33019747 [TBL] [Abstract][Full Text] [Related]
46. Internet of Unmanned Aerial Vehicles: QoS Provisioning in Aerial Ad-Hoc Networks. Kumar K; Kumar S; Kaiwartya O; Sikandar A; Kharel R; Mauri JL Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32498459 [TBL] [Abstract][Full Text] [Related]
48. Velocity Sensor for Real-Time Backstepping Control of a Multirotor Considering Actuator Dynamics. Mayorga-Macías WA; González-Jiménez LE; Meza-Aguilar MA; Luque-Vega LF Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751351 [TBL] [Abstract][Full Text] [Related]
49. Unmanned Aerial Vehicles for geospatial mapping of damage assessment: A study case of the 2021 Hanifa NR; Gunawan E; Firmansyah S; Faizal L; Retnowati DA; Pradipta GC; Imran I; Lassa JA Remote Sens Appl; 2022 Nov; 28():100830. PubMed ID: 36061233 [TBL] [Abstract][Full Text] [Related]
50. Unmanned aerial vehicles for surveying marine fauna: assessing detection probability. Hodgson A; Peel D; Kelly N Ecol Appl; 2017 Jun; 27(4):1253-1267. PubMed ID: 28178755 [TBL] [Abstract][Full Text] [Related]
51. Development of a VNIR/SWIR Multispectral Imaging System for Vegetation Monitoring with Unmanned Aerial Vehicles. Jenal A; Bareth G; Bolten A; Kneer C; Weber I; Bongartz J Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31847146 [TBL] [Abstract][Full Text] [Related]
52. Detection and Classification of Multirotor Drones in Radar Sensor Networks: A Review. Coluccia A; Parisi G; Fascista A Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32727117 [TBL] [Abstract][Full Text] [Related]
53. Internet of Unmanned Aerial Vehicles-A Multilayer Low-Altitude Airspace Model for Distributed UAV Traffic Management. Labib NS; Danoy G; Musial J; Brust MR; Bouvry P Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31684133 [TBL] [Abstract][Full Text] [Related]
54. A Review on the State of the Art in Copter Drones and Flight Control Systems. Peksa J; Mamchur D Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894139 [TBL] [Abstract][Full Text] [Related]
55. Applications of unmanned aerial vehicle (UAV) in road safety, traffic and highway infrastructure management: Recent advances and challenges. Outay F; Mengash HA; Adnan M Transp Res Part A Policy Pract; 2020 Nov; 141():116-129. PubMed ID: 33024357 [TBL] [Abstract][Full Text] [Related]
56. Intercomparison of Small Unmanned Aircraft System (sUAS) Measurements for Atmospheric Science during the LAPSE-RATE Campaign. Barbieri L; Kral ST; Bailey SCC; Frazier AE; Jacob JD; Reuder J; Brus D; Chilson PB; Crick C; Detweiler C; Doddi A; Elston J; Foroutan H; González-Rocha J; Greene BR; Guzman MI; Islam ALHA; Kemppinen O; Lawrence D; Pillar-Little EA; Ross SD; Sama M; Schmale DG; Schuyler TJ; Shankar A; Smith SW; Waugh S; Dixon C; Borenstein S; Boer G Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31083477 [TBL] [Abstract][Full Text] [Related]
57. Predicting the Health Status of an Unmanned Aerial Vehicles Data-Link System Based on a Bayesian Network. Wang X; Guo H; Wang J; Wang L Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30428631 [TBL] [Abstract][Full Text] [Related]
58. Integrated optimization of unmanned aerial vehicle task allocation and path planning under steady wind. Luo H; Liang Z; Zhu M; Hu X; Wang G PLoS One; 2018; 13(3):e0194690. PubMed ID: 29561888 [TBL] [Abstract][Full Text] [Related]
59. Fast collective evasion in self-localized swarms of unmanned aerial vehicles. Novák F; Walter V; Petráček P; Báča T; Saska M Bioinspir Biomim; 2021 Nov; 16(6):. PubMed ID: 34653998 [TBL] [Abstract][Full Text] [Related]
60. General Purpose Low-Level Reinforcement Learning Control for Multi-Axis Rotor Aerial Vehicles. Pi CH; Dai YW; Hu KC; Cheng S Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283119 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]