BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 33924557)

  • 1. Biomineralization of Plastic Waste to Improve the Strength of Plastic-Reinforced Cement Mortar.
    Kane S; Thane A; Espinal M; Lunday K; Armağan H; Phillips A; Heveran C; Ryan C
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33924557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impacts of biomineralization and oil contamination on the compressive strength of waste plastic-filled mortar.
    Rux K; Kane S; Espinal M; Ryan C; Phillips A; Heveran C
    Sci Rep; 2022 Dec; 12(1):21547. PubMed ID: 36513740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of soil density on biomineralization using EICP and MICP techniques for earthen sites consolidation.
    Li J; Zhu F; Wu F; Chen Y; Richards J; Li T; Li P; Shang D; Yu J; Viles H; Guo Q
    J Environ Manage; 2024 Jul; 363():121410. PubMed ID: 38850919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of microbially induced calcium carbonate precipitation treatment on the solidification and stabilization of municipal solid waste incineration fly ash (MSWI FA) - Based materials incorporated with metakaolin.
    Song M; Lan T; Meng Y; Ju T; Chen Z; Shen P; Du Y; Deng Y; Han S; Jiang J
    Chemosphere; 2022 Dec; 308(Pt 1):136089. PubMed ID: 36028130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review on the applications of microbially induced calcium carbonate precipitation in solid waste treatment and soil remediation.
    Song M; Ju T; Meng Y; Han S; Lin L; Jiang J
    Chemosphere; 2022 Mar; 290():133229. PubMed ID: 34896177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Study on Cementless PET Mortar with Marble Powder and Iron Slag as an Aggregate.
    Khan SU; Rahim A; Md Yusoff NI; Khan AH; Tabassum S
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37569974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomineralization in metakaolin modified cement mortar to improve its strength with lowered cement content.
    Li M; Zhu X; Mukherjee A; Huang M; Achal V
    J Hazard Mater; 2017 May; 329():178-184. PubMed ID: 28135655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomineralization of cyanobacteria Synechocystis pevalekii improves the durability properties of cement mortar.
    Sidhu N; Goyal S; Reddy MS
    AMB Express; 2022 May; 12(1):59. PubMed ID: 35587839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerated Reinforcement of Calcareous sand via Biomineralization with Aluminum Ion Flocculant.
    Wei R; Peng J; Li L; Jiang Z; Tang J
    Appl Biochem Biotechnol; 2023 Dec; 195(12):7197-7213. PubMed ID: 36988847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the Current Trends in the Utilization of Bacteria for Microbially Induced Calcium Carbonate Precipitation.
    Chuo SC; Mohamed SF; Mohd Setapar SH; Ahmad A; Jawaid M; Wani WA; Yaqoob AA; Mohamad Ibrahim MN
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33167607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient option of industrial wastewater resources in cement mortar application with river-sand by microbial induced calcium carbonate precipitation.
    Huang YH; Chen HJ; Maity JP; Chen CC; Sun AC; Chen CY
    Sci Rep; 2020 Apr; 10(1):6742. PubMed ID: 32317706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioremediation of mortar made from Ordinary Portland Cement degraded by
    Ngari RW; Thiong'o JK; Wachira JM; Muriithi G; Mutitu DK
    Heliyon; 2021 Jun; 7(6):e07215. PubMed ID: 34159272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the potential for microbially induced carbonate precipitation to treat mine waste.
    Proudfoot D; Brooks L; Gammons CH; Barth E; Bless D; Nagisetty RM; Lauchnor EG
    J Hazard Mater; 2022 Feb; 424(Pt C):127490. PubMed ID: 34740156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An indigenous bacterium with enhanced performance of microbially-induced Ca-carbonate biomineralization under extreme alkaline conditions for concrete and soil-improvement industries.
    Marín S; Cabestrero O; Demergasso C; Olivares S; Zetola V; Vera M
    Acta Biomater; 2021 Jan; 120():304-317. PubMed ID: 33212232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Irradiated recycled plastic as a concrete additive for improved chemo-mechanical properties and lower carbon footprint.
    Schaefer CE; Kupwade-Patil K; Ortega M; Soriano C; Büyüköztürk O; White AE; Short MP
    Waste Manag; 2018 Jan; 71():426-439. PubMed ID: 29033018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental study of microorganism-induced calcium carbonate precipitation to solidify coal gangue as backfill materials: mechanical properties and microstructure.
    Wang Z; Zhang J; Li M; Guo S; Zhang J; Zhu G
    Environ Sci Pollut Res Int; 2022 Jun; 29(30):45774-45782. PubMed ID: 35150426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life cycle assessment of biocemented sands using enzyme induced carbonate precipitation (EICP) for soil stabilization applications.
    Alotaibi E; Arab MG; Abdallah M; Nassif N; Omar M
    Sci Rep; 2022 Apr; 12(1):6032. PubMed ID: 35411057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal transformation and self-assembly theory of microbially induced calcium carbonate precipitation.
    Chen YQ; Wang SQ; Tong XY; Kang X
    Appl Microbiol Biotechnol; 2022 May; 106(9-10):3555-3569. PubMed ID: 35501489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Study on Silt Soil Improved by Microbial Solidification with the Use of Lignin.
    Sun Y; Zhong X; Lv J; Wang G
    Microorganisms; 2023 Jan; 11(2):. PubMed ID: 36838245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-cement-modified construction materials and their performances.
    Yu X; He Z; Li X
    Environ Sci Pollut Res Int; 2022 Feb; 29(8):11219-11231. PubMed ID: 34528205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.