These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 33924607)

  • 1. Recent Advances in Chemical Sensors Using Porphyrin-Carbon Nanostructure Hybrid Materials.
    Magna G; Mandoj F; Stefanelli M; Pomarico G; Monti D; Di Natale C; Paolesse R; Nardis S
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33924607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent developments in carbon nanomaterial sensors.
    Baptista FR; Belhout SA; Giordani S; Quinn SJ
    Chem Soc Rev; 2015 Jul; 44(13):4433-53. PubMed ID: 25980819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes.
    Capek I
    Adv Colloid Interface Sci; 2009 Sep; 150(2):63-89. PubMed ID: 19573856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The strength in Numbers! Porphyrin hybrid nanostructured materials for chemical sensing.
    Magna G; Nardis S; Stefanelli M; Monti D; Di Natale C; Paolesse R
    Dalton Trans; 2021 May; 50(17):5724-5731. PubMed ID: 33949554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porphyrins-Functionalized Single-Walled Carbon Nanotubes Chemiresistive Sensor Arrays for VOCs.
    Shirsat MD; Sarkar T; Kakoullis J; Myung NV; Konnanath B; Spanias A; Mulchandani A
    J Phys Chem C Nanomater Interfaces; 2012 Sep; 116(5):3845-3850. PubMed ID: 22393460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porphyrin-Functionalized Zinc Oxide Nanostructures for Sensor Applications.
    Ekrami M; Magna G; Emam-Djomeh Z; Saeed Yarmand M; Paolesse R; Di Natale C
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30011907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications.
    Speranza G
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33918769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Films of Graphene and Carbon Nanotubes for High Performance Chemical and Temperature Sensing Applications.
    Tung TT; Pham-Huu C; Janowska I; Kim T; Castro M; Feller JF
    Small; 2015 Jul; 11(28):3485-93. PubMed ID: 25808714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled Multiphysics Modelling of Sensors for Chemical, Biomedical, and Environmental Applications with Focus on Smart Materials and Low-Dimensional Nanostructures.
    Singh S; Melnik R
    Chemosensors (Basel); 2022 May; 10(5):157. PubMed ID: 35909810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoluminescence properties of graphene versus other carbon nanomaterials.
    Cao L; Meziani MJ; Sahu S; Sun YP
    Acc Chem Res; 2013 Jan; 46(1):171-80. PubMed ID: 23092181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porphyrinoids for Chemical Sensor Applications.
    Paolesse R; Nardis S; Monti D; Stefanelli M; Di Natale C
    Chem Rev; 2017 Feb; 117(4):2517-2583. PubMed ID: 28222604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoelectronic Heterodyne Sensor: A New Electronic Sensing Paradigm.
    Kulkarni GS; Zang W; Zhong Z
    Acc Chem Res; 2016 Nov; 49(11):2578-2586. PubMed ID: 27668314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene and Carbon-Nanotube Nanohybrids Covalently Functionalized by Porphyrins and Phthalocyanines for Optoelectronic Properties.
    Wang A; Ye J; Humphrey MG; Zhang C
    Adv Mater; 2018 Apr; 30(17):e1705704. PubMed ID: 29450914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltammetric sensing based on the use of advanced carbonaceous nanomaterials: a review.
    Sinha A; Dhanjai ; Jain R; Zhao H; Karolia P; Jadon N
    Mikrochim Acta; 2018 Jan; 185(2):89. PubMed ID: 29594390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon Nanostructures, Nanolayers, and Their Composites.
    Slepičková Kasálková N; Slepička P; Švorčík V
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible Graphene-Based Wearable Gas and Chemical Sensors.
    Singh E; Meyyappan M; Nalwa HS
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34544-34586. PubMed ID: 28876901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing.
    Jariwala D; Sangwan VK; Lauhon LJ; Marks TJ; Hersam MC
    Chem Soc Rev; 2013 Apr; 42(7):2824-60. PubMed ID: 23124307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances in Phthalocyanine and Porphyrin-Based Materials as Active Layers for Nitric Oxide Chemical Sensors.
    Klyamer D; Shutilov R; Basova T
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in Ammonia Gas Sensors Based on Carbon Nanomaterials.
    Bannov AG; Popov MV; Brester AE; Kurmashov PB
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33673142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.