These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33924686)

  • 1. Performance of Vehicular Visible Light Communications under the Effects of Atmospheric Turbulence with Aperture Averaging.
    Eso E; Ghassemlooy Z; Zvanovec S; Sathian J; Abadi MM; Younus OI
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental investigation on the effect of wavelength on aperture averaging in FSO communications.
    Nouri H; Uysal M
    Opt Lett; 2020 Jun; 45(11):3063-3066. PubMed ID: 32479460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IRS-assisted vehicular visible light communications systems: channel modeling and performance analysis.
    Rabiepoor A; Nezamalhosseini SA; Chen LR
    Appl Opt; 2024 Jan; 63(1):167-178. PubMed ID: 38175018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance analysis of a PPM-FSO communication system with an avalanche photodiode receiver over atmospheric turbulence channels with aperture averaging.
    Fu H; Wang P; Liu T; Cao T; Guo L; Qin J
    Appl Opt; 2017 Aug; 56(23):6432-6439. PubMed ID: 29047932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vehicular visible light communications noise analysis and modeling.
    Qin H; Liang J; Ke X
    Appl Opt; 2023 Jun; 62(16):4134-4142. PubMed ID: 37706896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing Vehicular Visible Light Communications Range Based on LED Current Overdriving and Variable Pulse Position Modulation: Concept and Experimental Validation.
    Beguni C; Căilean AM; Avătămăniței SA; Potorac AD; Zadobrischi E; Dimian M
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical Camera Communications for IoT-Rolling-Shutter Based MIMO Scheme with Grouped LED Array Transmitter.
    Teli SR; Matus V; Zvanovec S; Perez-Jimenez R; Vitek S; Ghassemlooy Z
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32545751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SNR advantage of anisotropy in oceanic optical wireless communications links.
    Baykal Y
    J Opt Soc Am A Opt Image Sci Vis; 2019 Dec; 36(12):1991-1996. PubMed ID: 31873369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atmospheric optical communication with a Gaussian Schell beam.
    Ricklin JC; Davidson FM
    J Opt Soc Am A Opt Image Sci Vis; 2003 May; 20(5):856-66. PubMed ID: 12747433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Curved OLED-based NLOS optical camera communications links.
    Teli SR; Matus V; Aguiar CL; Perez-Jimenez R; Ghassemlooy Z; Zvanovec S
    Appl Opt; 2023 Oct; 62(30):8204-8210. PubMed ID: 38038119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aperture averaging in multiple-input single-output free-space optical systems using partially coherent radial array beams.
    Gökçe MC; Baykal Y; Uysal M
    J Opt Soc Am A Opt Image Sci Vis; 2016 Jun; 33(6):1041-8. PubMed ID: 27409430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymptotic error-rate analysis of FSO links using transmit laser selection over gamma-gamma atmospheric turbulence channels with pointing errors.
    García-Zambrana A; Castillo-Vázquez B; Castillo-Vázquez C
    Opt Express; 2012 Jan; 20(3):2096-109. PubMed ID: 22330450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmitter and receiver technologies for optical wireless.
    O'Brien D; Rajbhandari S; Chun H
    Philos Trans A Math Phys Eng Sci; 2020 Apr; 378(2169):20190182. PubMed ID: 32114919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis and Experimental Investigation of the Light Dimming Effect on Automotive Visible Light Communications Performances.
    Beguni C; Căilean AM; Avătămăniței SA; Dimian M
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34209662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Empirical study of an underwater optical camera communication system under turbulent conditions.
    Majlesein B; Geldard CT; Guerra V; Rufo J; Popoola WO; Rabadan J
    Opt Express; 2023 Jun; 31(13):21493-21506. PubMed ID: 37381247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiative effects of atmospheric aerosols on the average channel capacity of free-space optical communication systems.
    Sunilkumar K; Anand N; Satheesh SK; Krishna Moorthy K; Ilavazhagan G
    Appl Opt; 2021 Nov; 60(31):9957-9965. PubMed ID: 34807186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of a vehicle's mobility on SNR and SINR in vehicular optical camera communication systems.
    Eghbal M; Tabataba FS; Gholami A; Abouei J; Uysal M
    Opt Express; 2024 Mar; 32(7):12257-12275. PubMed ID: 38571054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of aperture averaging and beam width on a partially coherent Gaussian beam over free-space optical links with turbulence and pointing errors.
    Lee IE; Ghassemlooy Z; Ng WP; Khalighi MA; Liaw SK
    Appl Opt; 2016 Jan; 55(1):1-9. PubMed ID: 26835614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of atmospheric turbulence and building sway on optical wireless-communication systems.
    Arnon S
    Opt Lett; 2003 Jan; 28(2):129-31. PubMed ID: 12656506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving system performance by using adaptive optics and aperture averaging for laser communications in oceanic turbulence.
    Toselli I; Gladysz S
    Opt Express; 2020 Jun; 28(12):17347-17361. PubMed ID: 32679944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.