These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 33924770)
1. Dynamics of Stress-Driven Two-Phase Elastic Beams. Vaccaro MS; Pinnola FP; Marotti de Sciarra F; Barretta R Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33924770 [TBL] [Abstract][Full Text] [Related]
2. Hygro-Thermal Vibrations of Porous FG Nano-Beams Based on Local/Nonlocal Stress Gradient Theory of Elasticity. Penna R; Feo L; Lovisi G; Fabbrocino F Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33918408 [TBL] [Abstract][Full Text] [Related]
3. Elastostatics of Bernoulli-Euler Beams Resting on Displacement-Driven Nonlocal Foundation. Vaccaro MS; Pinnola FP; Marotti de Sciarra F; Barretta R Nanomaterials (Basel); 2021 Feb; 11(3):. PubMed ID: 33668853 [TBL] [Abstract][Full Text] [Related]
4. Application of the Higher-Order Hamilton Approach to the Nonlinear Free Vibrations Analysis of Porous FG Nano-Beams in a Hygrothermal Environment Based on a Local/Nonlocal Stress Gradient Model of Elasticity. Penna R; Feo L; Lovisi G; Fabbrocino F Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745434 [TBL] [Abstract][Full Text] [Related]
5. Nonlinear vibrations of pre- and post-buckled lipid supramolecular micro/nano-tubules via nonlocal strain gradient elasticity theory. Sahmani S; Aghdam MM J Biomech; 2017 Dec; 65():49-60. PubMed ID: 29050823 [TBL] [Abstract][Full Text] [Related]
6. Critical Temperatures for Vibrations and Buckling of Magneto-Electro-Elastic Nonlocal Strain Gradient Plates. Tocci Monaco G; Fantuzzi N; Fabbrocino F; Luciano R Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33401556 [TBL] [Abstract][Full Text] [Related]
7. Nonlocal strain gradient beam model for postbuckling and associated vibrational response of lipid supramolecular protein micro/nano-tubules. Sahmani S; Aghdam MM Math Biosci; 2018 Jan; 295():24-35. PubMed ID: 29104135 [TBL] [Abstract][Full Text] [Related]
8. A Modified Couple Stress Elasticity for Non-Uniform Composite Laminated Beams Based on the Ritz Formulation. Jouneghani FZ; Babamoradi H; Dimitri R; Tornabene F Molecules; 2020 Mar; 25(6):. PubMed ID: 32204431 [TBL] [Abstract][Full Text] [Related]
9. Small-scale effects on the radial vibration of an elastic nanosphere based on nonlocal strain gradient theory. Ducottet S; El Baroudi A Nanotechnology; 2023 Jan; 34(11):. PubMed ID: 36595326 [TBL] [Abstract][Full Text] [Related]
13. The small length scale effect for a non-local cantilever beam: a paradox solved. Challamel N; Wang CM Nanotechnology; 2008 Aug; 19(34):345703. PubMed ID: 21730658 [TBL] [Abstract][Full Text] [Related]
14. Dynamic Behavior of Magnetically Affected Rod-Like Nanostructures with Multiple Defects via Nonlocal-Integral/Differential-Based Models. Kiani K; Żur KK Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33233384 [TBL] [Abstract][Full Text] [Related]
15. Free vibration analysis of DWCNTs using CDM and Rayleigh-Schmidt based on Nonlocal Euler-Bernoulli beam theory. De Rosa MA; Lippiello M ScientificWorldJournal; 2014; 2014():194529. PubMed ID: 24715807 [TBL] [Abstract][Full Text] [Related]
16. Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Li X; Bhushan B; Takashima K; Baek CW; Kim YK Ultramicroscopy; 2003; 97(1-4):481-94. PubMed ID: 12801705 [TBL] [Abstract][Full Text] [Related]
17. Modelling the Size Effects on the Mechanical Properties of Micro/Nano Structures. Abazari AM; Safavi SM; Rezazadeh G; Villanueva LG Sensors (Basel); 2015 Nov; 15(11):28543-62. PubMed ID: 26569256 [TBL] [Abstract][Full Text] [Related]
18. Thermo-Electro-Mechanical Vibrations of Porous Functionally Graded Piezoelectric Nanoshells. Liu YF; Wang YQ Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30791652 [TBL] [Abstract][Full Text] [Related]
19. A review of patented works on the mechanical characterization of materials at micro- and nano-scale. Alfano M; Pagnotta L; Pantano MF Recent Pat Nanotechnol; 2011 Jan; 5(1):37-45. PubMed ID: 21231910 [TBL] [Abstract][Full Text] [Related]
20. The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Wang Q; Wang CM Nanotechnology; 2007 Feb; 18(7):075702. PubMed ID: 21730510 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]