BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 33924773)

  • 1. A Navigation and Augmented Reality System for Visually Impaired People.
    Lo Valvo A; Croce D; Garlisi D; Giuliano F; Giarré L; Tinnirello I
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33924773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VES: A Mixed-Reality Development Platform of Navigation Systems for Blind and Visually Impaired.
    Real S; Araujo A
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. When Ultrasonic Sensors and Computer Vision Join Forces for Efficient Obstacle Detection and Recognition.
    Mocanu B; Tapu R; Zaharia T
    Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27801834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smartphone-based computer vision travelling aids for blind and visually impaired individuals: A systematic review.
    Budrionis A; Plikynas D; Daniušis P; Indrulionis A
    Assist Technol; 2022 Mar; 34(2):178-194. PubMed ID: 32207640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The MAPS: Toward a Novel Mobility Assistance System for Visually Impaired People.
    Romeo K; Pissaloux E; Gay SL; Truong NT; Djoussouf L
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning-Based Positioning of Visually Impaired People in Indoor Environments.
    Mahida P; Shahrestani S; Cheung H
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33142927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Path Generator with Unpaired Samples Employing Generative Adversarial Networks.
    Maldonado-Romo J; Maldonado-Romo A; Aldape-Pérez M
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multimodal sensing and intuitive steering assistance improve navigation and mobility for people with impaired vision.
    Slade P; Tambe A; Kochenderfer MJ
    Sci Robot; 2021 Oct; 6(59):eabg6594. PubMed ID: 34644159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of an Audio-haptic Sensory Substitution Device for Enhancing Spatial Awareness for the Visually Impaired.
    Hoffmann R; Spagnol S; Kristjánsson Á; Unnthorsson R
    Optom Vis Sci; 2018 Sep; 95(9):757-765. PubMed ID: 30153241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereo Vision Based Sensory Substitution for the Visually Impaired.
    Caraiman S; Zvoristeanu O; Burlacu A; Herghelegiu P
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31226796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Augmented Reality-Centered Position Navigation for Wearable Devices with Machine Learning Techniques.
    Kamalam GK; Joshi S; Maheshwari M; Selvan KS; Jamal SS; Vairaprakash S; Alhassan M
    J Healthc Eng; 2022; 2022():1083978. PubMed ID: 35432829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comparative Study in Real-Time Scene Sonification for Visually Impaired People.
    Hu W; Wang K; Yang K; Cheng R; Ye Y; Sun L; Xu Z
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32517134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards Aircraft Maintenance Metaverse Using Speech Interactions with Virtual Objects in Mixed Reality.
    Siyaev A; Jo GS
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33804253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple Smartphone-Based Guiding System for Visually Impaired People.
    Lin BS; Lee CC; Chiang PY
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28608811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An indoor navigation system for the visually impaired.
    Guerrero LA; Vasquez F; Ochoa SF
    Sensors (Basel); 2012; 12(6):8236-58. PubMed ID: 22969398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Multi-Object Detection and Smart Navigation Using Artificial Intelligence for Visually Impaired People.
    Joshi RC; Yadav S; Dutta MK; Travieso-Gonzalez CM
    Entropy (Basel); 2020 Aug; 22(9):. PubMed ID: 33286711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward an Inclusive and Independent Fruition of Architecture: The Use of Scale Models and Augmented Reality.
    Cavalieri F; Rotilio M; De Berardinis P
    Stud Health Technol Inform; 2022 Sep; 297():383-390. PubMed ID: 36073417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Object Localization Assistive System Based on CV and Vibrotactile Encoding.
    Wei Z; Song A; Hu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2882-2885. PubMed ID: 36086052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sound-Based Localization Using LSTM Networks for Visually Impaired Navigation.
    Bakouri M; Alyami N; Alassaf A; Waly M; Alqahtani T; AlMohimeed I; Alqahtani A; Samsuzzaman M; Ismail HF; Alharbi Y
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Lightweight Approach to Localization for Blind and Visually Impaired Travelers.
    Crabb R; Cheraghi SA; Coughlan JM
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.