These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33925012)

  • 1. Detection of Sub-Micro- and Nanoplastic Particles on Gold Nanoparticle-Based Substrates through Surface-Enhanced Raman Scattering (SERS) Spectroscopy.
    Caldwell J; Taladriz-Blanco P; Rothen-Rutishauser B; Petri-Fink A
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33925012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Submicron- and nanoplastic detection at low micro- to nanogram concentrations using gold nanostar-based surface-enhanced Raman scattering (SERS) substrates.
    Caldwell J; Taladriz-Blanco P; Rodriguez-Lorenzo L; Rothen-Rutishauser B; Petri-Fink A
    Environ Sci Nano; 2024 Mar; 11(3):1000-1011. PubMed ID: 38496351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Poly(ethylene terephthalate) Nanoplastics in Commercially Bottled Drinking Water Using Surface-Enhanced Raman Spectroscopy.
    Zhang J; Peng M; Lian E; Xia L; Asimakopoulos AG; Luo S; Wang L
    Environ Sci Technol; 2023 Jun; 57(22):8365-8372. PubMed ID: 37220668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable preparation of mesoporous spike gold nanocrystals for surface-enhanced Raman spectroscopy detection of micro/nanoplastics in water.
    Qin Y; Qiu J; Tang N; Wu Y; Yao W; He Y
    Environ Res; 2023 Jul; 228():115926. PubMed ID: 37076031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-Enhanced Raman Spectroscopy Facilitates the Detection of Microplastics <1 μm in the Environment.
    Xu G; Cheng H; Jones R; Feng Y; Gong K; Li K; Fang X; Tahir MA; Valev VK; Zhang L
    Environ Sci Technol; 2020 Dec; 54(24):15594-15603. PubMed ID: 33095569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational design of Raman-labeled nanoparticles for a dual-modality, light scattering immunoassay on a polystyrene substrate.
    Israelsen ND; Wooley D; Hanson C; Vargis E
    J Biol Eng; 2016; 10():2. PubMed ID: 26751120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of environmental nanoplastics via surface-enhanced Raman spectroscopy using high-density, ring-shaped nanogap arrays.
    Luo S; Zhang J; de Mello JC
    Front Bioeng Biotechnol; 2023; 11():1242797. PubMed ID: 37941723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sub-10 nm Nanoparticle Detection Using Multi-Technique-Based Micro-Raman Spectroscopy.
    Bereczki A; Dipold J; Freitas AZ; Wetter NU
    Polymers (Basel); 2023 Dec; 15(24):. PubMed ID: 38139897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of polystyrene nanoplastics using surface enhanced Raman spectroscopy.
    Zhou XX; Liu R; Hao LT; Liu JF
    Talanta; 2021 Jan; 221():121552. PubMed ID: 33076108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of submicron- and nanoplastics spiked in environmental fresh- and saltwater with Raman spectroscopy.
    Caldwell J; Rodriguez-Lorenzo L; Espiña B; Beck A; Stock F; Voges K; Pabortsava K; Feltham C; Horton A; Lampitt R; Rothen-Rutishauser B; Taladriz-Blanco P; Petri-Fink A
    Mar Pollut Bull; 2024 Jun; 203():116468. PubMed ID: 38744048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid detection of nanoplastics down to 20 nm in water by surface-enhanced raman spectroscopy.
    Ruan X; Xie L; Liu J; Ge Q; Liu Y; Li K; You W; Huang T; Zhang L
    J Hazard Mater; 2024 Jan; 462():132702. PubMed ID: 37837774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Trace Polystyrene Nanoplastics Down to 50 nm by the Hyphenated Method of Filtration and Surface-Enhanced Raman Spectroscopy Based on Silver Nanowire Membranes.
    Yang Q; Zhang S; Su J; Li S; Lv X; Chen J; Lai Y; Zhan J
    Environ Sci Technol; 2022 Aug; 56(15):10818-10828. PubMed ID: 35852947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The onset of surface-enhanced Raman scattering for single-particle detection of submicroplastics.
    Lee CH; Fang JK
    J Environ Sci (China); 2022 Nov; 121():58-64. PubMed ID: 35654516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A green approach to nanoplastic detection: SERS with untreated filter paper for polystyrene nanoplastics.
    Chaisrikhwun B; Balani MJD; Ekgasit S; Xie Y; Ozaki Y; Pienpinijtham P
    Analyst; 2024 Jul; ():. PubMed ID: 39010793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative and rapid detection of nanoplastics labeled by luminescent metal phenolic networks using surface-enhanced Raman scattering.
    Ye H; Esfahani EB; Chiu I; Mohseni M; Gao G; Yang T
    J Hazard Mater; 2024 May; 470():134194. PubMed ID: 38583196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water.
    Schymanski D; Goldbeck C; Humpf HU; Fürst P
    Water Res; 2018 Feb; 129():154-162. PubMed ID: 29145085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ surface-enhanced Raman spectroscopy for detecting microplastics and nanoplastics in aquatic environments.
    Lv L; He L; Jiang S; Chen J; Zhou C; Qu J; Lu Y; Hong P; Sun S; Li C
    Sci Total Environ; 2020 Aug; 728():138449. PubMed ID: 32353796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies and Challenges of Identifying Nanoplastics in Environment by Surface-Enhanced Raman Spectroscopy.
    Xie L; Gong K; Liu Y; Zhang L
    Environ Sci Technol; 2023 Jan; 57(1):25-43. PubMed ID: 36576086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructured Raman substrates for the sensitive detection of submicrometer-sized plastic pollutants in water.
    Lê QT; Ly NH; Kim MK; Lim SH; Son SJ; Zoh KD; Joo SW
    J Hazard Mater; 2021 Jan; 402():123499. PubMed ID: 32739725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.