These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 33925101)

  • 41. News from Mars: Two-Tier Paradox, Intracellular PCR, Chimeric Junction Shift, Dark Matter mRNA and Other Remarkable Features of Mammalian RNA-Dependent mRNA Amplification. Implications for Alzheimer's Disease, RNA-Based Vaccines and mRNA Therapeutics.
    Volloch V; Rits-Volloch S
    Ann Integr Mol Med; 2021; 2():131-173. PubMed ID: 33942036
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microfluidic sonicator for real-time disruption of eukaryotic cells and bacterial spores for DNA analysis.
    Marentis TC; Kusler B; Yaralioglu GG; Liu S; Haeggström EO; Khuri-Yakub BT
    Ultrasound Med Biol; 2005 Sep; 31(9):1265-77. PubMed ID: 16176793
    [TBL] [Abstract][Full Text] [Related]  

  • 43. All electronic approach for high-throughput cell trapping and lysis with electrical impedance monitoring.
    Ameri SK; Singh PK; Dokmeci MR; Khademhosseini A; Xu Q; Sonkusale SR
    Biosens Bioelectron; 2014 Apr; 54():462-7. PubMed ID: 24315878
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rapidly prototyped multi-scale electrodes to minimize the voltage requirements for bacterial cell lysis.
    Gabardo CM; Kwong AM; Soleymani L
    Analyst; 2015 Mar; 140(5):1599-608. PubMed ID: 25597363
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microfluidic Single-Cell Omics Analysis.
    Xu X; Wang J; Wu L; Guo J; Song Y; Tian T; Wang W; Zhu Z; Yang C
    Small; 2020 Mar; 16(9):e1903905. PubMed ID: 31544338
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Systems nanobiology: from quantitative single molecule biophysics to microfluidic-based single cell analysis.
    Martini J; Hellmich W; Greif D; Becker A; Merkle T; Ros R; Ros A; Toensing K; Anselmetti D
    Subcell Biochem; 2007; 43():301-21. PubMed ID: 17953400
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An ultra-high temperature flow-through capillary device for bacterial spore lysis.
    Hukari KW; Patel KD; Renzi RF; West JA
    Electrophoresis; 2010 Aug; 31(16):2804-12. PubMed ID: 20737447
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Current state of fabrication technologies and materials for bone tissue engineering.
    Wubneh A; Tsekoura EK; Ayranci C; Uludağ H
    Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microfluidic-Based Single-Cell Study: Current Status and Future Perspective.
    Wu H; Zhu J; Huang Y; Wu D; Sun J
    Molecules; 2018 Sep; 23(9):. PubMed ID: 30217082
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cell Migration in Microfluidic Devices: Invadosomes Formation in Confined Environments.
    Chi PY; Spuul P; Tseng FG; Genot E; Chou CF; Taloni A
    Adv Exp Med Biol; 2019; 1146():79-103. PubMed ID: 31612455
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single-cell assay on microfluidic devices.
    Huang Q; Mao S; Khan M; Lin JM
    Analyst; 2019 Jan; 144(3):808-823. PubMed ID: 30177979
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Application of microfluidics in sperm isolation and in vitro fertilization].
    Li FF; Wang XY; Zhou SM; You F
    Zhonghua Nan Ke Xue; 2014 May; 20(5):452-9. PubMed ID: 24908739
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An integrated microfluidic device for rapid cell lysis and DNA purification of epithelial cell samples.
    Ha SM; Cho W; Ahn Y; Hwang SY
    J Nanosci Nanotechnol; 2011 May; 11(5):4250-3. PubMed ID: 21780436
    [TBL] [Abstract][Full Text] [Related]  

  • 54. On-chip lysis of mammalian cells through a handheld corona device.
    Escobedo C; Bürgel SC; Kemmerling S; Sauter N; Braun T; Hierlemann A
    Lab Chip; 2015 Jul; 15(14):2990-7. PubMed ID: 26055165
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A new microfluidic device for electric lysis and separation of cells.
    Brun M; Frénéa-Robin M; Chateaux JF; Haddour N; Deman AL; Ferrigno R
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6281-4. PubMed ID: 23367365
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cytotoxic lymphocyte granzymes trigger a target cell internal disintegration pathway leading to cytolysis and DNA breakdown.
    Nakajima H; Henkart PA
    J Immunol; 1994 Feb; 152(3):1057-63. PubMed ID: 7507956
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On-line cell lysis and DNA extraction on a microfluidic biochip fabricated by microelectromechanical system technology.
    Chen X; Cui DF; Liu CC
    Electrophoresis; 2008 May; 29(9):1844-51. PubMed ID: 18393339
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sacrificial layer microfluidic device fabrication methods.
    Peeni BA; Lee ML; Hawkins AR; Woolley AT
    Electrophoresis; 2006 Dec; 27(24):4888-95. PubMed ID: 17117379
    [TBL] [Abstract][Full Text] [Related]  

  • 59.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.