BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33925330)

  • 1. Hyperspectral Imaging for Bloodstain Identification.
    Zulfiqar M; Ahmad M; Sohaib A; Mazzara M; Distefano S
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33925330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperspectral imaging in forensic science: An overview of major application areas.
    Mariotti KC; Ortiz RS; Ferrão MF
    Sci Justice; 2023 May; 63(3):387-395. PubMed ID: 37169464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of fabric mounting method and backing material on bloodstain patterns of drip stains on textiles.
    Chang JY; Michielsen S
    Int J Legal Med; 2016 May; 130(3):649-59. PubMed ID: 26797424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forensic applications of hyperspectral imaging technique: a narrative review.
    Pallocci M; Treglia M; Passalacqua P; Luca L; Zanovello C; Mazzuca D; Guarna F; Gratteri S; Marsella LT
    Med Leg J; 2022 Dec; 90(4):216-220. PubMed ID: 36121069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preliminary observations on the ability of hyperspectral imaging to provide detection and visualization of bloodstain patterns on black fabrics.
    Schuler RL; Kish PE; Plese CA
    J Forensic Sci; 2012 Nov; 57(6):1562-9. PubMed ID: 22563710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison between visible wavelength hyperspectral imaging and digital photography for the detection and identification of bloodstained footwear marks.
    Crowther M; Li B; Thompson T; Islam M
    J Forensic Sci; 2021 Nov; 66(6):2424-2437. PubMed ID: 34363402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of yarn structure on wicking and its impact on bloodstain pattern analysis (BPA) on woven cotton fabrics.
    Li X; Li J; Michielsen S
    Forensic Sci Int; 2017 Jul; 276():41-50. PubMed ID: 28499150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpreting the formation of bloodstains on selected apparel fabrics.
    de Castro T; Nickson T; Carr D; Knock C
    Int J Legal Med; 2013 Jan; 127(1):251-8. PubMed ID: 22639348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of micro computed tomography to ascertain the morphology of bloodstains on fabric.
    Dicken L; Knock C; Beckett S; de Castro TC; Nickson T; Carr DJ
    Forensic Sci Int; 2015 Dec; 257():369-375. PubMed ID: 26528668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of the digital printing of fabric on the morphology of passive bloodstains.
    Dicken L; Knock C; Carr DJ; Beckett S
    Forensic Sci Int; 2022 Dec; 341():111515. PubMed ID: 36371981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic investigation of drip stains on apparel fabrics: The effects of prior-laundering, fibre content and fabric structure on final stain appearance.
    de Castro TC; Taylor MC; Kieser JA; Carr DJ; Duncan W
    Forensic Sci Int; 2015 May; 250():98-109. PubMed ID: 25828382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of latent bloodstains beneath painted surfaces using reflected infrared photography.
    Farrar A; Porter G; Renshaw A
    J Forensic Sci; 2012 Sep; 57(5):1190-8. PubMed ID: 22845038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of infrared photography for latent bloodstain visualization and the influence of time.
    Winnepenninckx A; Verhoeven E; Vermeulen S; Bekaert B
    Forensic Sci Int; 2022 Feb; 331():111167. PubMed ID: 34992011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of latent bloodstains at fire scenes using reflected infrared photography.
    Bastide B; Porter G; Renshaw A
    Forensic Sci Int; 2019 Sep; 302():109874. PubMed ID: 31421438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detectability of bloodstains after machine washing.
    Hofmann M; Adamec J; Anslinger K; Bayer B; Graw M; Peschel O; Schulz MM
    Int J Legal Med; 2019 Jan; 133(1):3-16. PubMed ID: 30032458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The non-contact detection and identification of blood stained fingerprints using visible wavelength reflectance hyperspectral imaging: Part 1.
    Cadd S; Li B; Beveridge P; O'Hare WT; Campbell A; Islam M
    Sci Justice; 2016 May; 56(3):181-190. PubMed ID: 27162016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrimination of human and animal bloodstains using hyperspectral imaging.
    Cooney GS; Köhler H; Chalopin C; Babian C
    Forensic Sci Med Pathol; 2023 Sep; ():. PubMed ID: 37721660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the visibility of blood on dark surfaces: A practical evaluation of visible light, NIR, and SWIR imaging.
    Schotman TG; Westen AA; van der Weerd J; de Bruin KG
    Forensic Sci Int; 2015 Dec; 257():214-219. PubMed ID: 26386337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forensic analysis of beverage stains using hyperspectral imaging.
    Melit Devassy B; George S
    Sci Rep; 2021 Mar; 11(1):6512. PubMed ID: 33753793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of visible wavelength reflectance hyperspectral imaging and Acid Black 1 for the detection and identification of blood stained fingerprints.
    Cadd S; Li B; Beveridge P; O Hare WT; Campbell A; Islam M
    Sci Justice; 2016 Jul; 56(4):247-55. PubMed ID: 27320396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.