These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3392541)

  • 1. Occurrence of lipid peroxidation in brain microsomes in the presence of NADH and vanadate.
    Patole MS; Ramasarma T
    J Neurochem; 1988 Aug; 51(2):491-6. PubMed ID: 3392541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vanadate-stimulated NADH oxidation in microsomes.
    Rau M; Patole MS; Vijaya S; Kurup CK; Ramasarma T
    Mol Cell Biochem; 1987 Jun; 75(2):151-9. PubMed ID: 3650694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of a heme-peptide derived from cytochrome-c on lipid peroxidation. I. Effects on brain microsomes.
    Vodnyánszky L; Marton A; Végh M; Blázovits A; Auth F; Vértes A; Horváth I
    Acta Biochim Biophys Hung; 1986; 21(1-2):3-11. PubMed ID: 3024427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vanadate-dependent oxidation of pyridine nucleotides in rat liver microsomal membranes.
    Coulombe RA; Briskin DP; Keller RJ; Thornley WR; Sharma RP
    Arch Biochem Biophys; 1987 Jun; 255(2):267-73. PubMed ID: 3647757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A vanadate-stimulated NADH oxidase in erythrocyte membrane generates hydrogen peroxide.
    Vijaya S; Crane FL; Ramasarma T
    Mol Cell Biochem; 1984 Jun; 62(2):175-85. PubMed ID: 6087122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of lipid peroxidation by heme-nonapeptide derived from cytochrome c.
    Vodnyánszky L; Marton A; Venekei I; Végh M; Blázovits A; Kittel A; Horváth I
    Biochim Biophys Acta; 1985 Jul; 835(2):411-4. PubMed ID: 2988642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vanadate stimulated NADH oxidation in sarcoplasmic reticulum membrane.
    Molnár E; Kiss Z; Dux L; Guba F
    Acta Biochim Biophys Hung; 1988; 23(1):63-74. PubMed ID: 2970751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vanadate-dependent NADH oxidation in microsomal membranes of sugar beet.
    Briskin DP; Thornley WR; Poole RJ
    Arch Biochem Biophys; 1985 Jan; 236(1):228-37. PubMed ID: 3843927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of vanadate-dependent NADH oxidation stimulated by Saccharomyces cerevisiae plasma membranes.
    Minasi LA; Willsky GR
    J Bacteriol; 1991 Jan; 173(2):834-41. PubMed ID: 1987166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vanadate-stimulated NADH oxidation by xanthine oxidase: an intrinsic property.
    Khandke L; Gullapalli S; Patole MS; Ramasarma T
    Arch Biochem Biophys; 1986 Feb; 244(2):742-9. PubMed ID: 3633190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADH-dependent generation of reactive oxygen species by microsomes in the presence of iron and redox cycling agents.
    Dicker E; Cederbaum AI
    Biochem Pharmacol; 1991 Jul; 42(3):529-35. PubMed ID: 1650215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The vanadate-stimulated oxidation of NAD(P)H by biomembranes is a superoxide-initiated free radical chain reaction.
    Liochev S; Fridovich I
    Arch Biochem Biophys; 1986 Oct; 250(1):139-45. PubMed ID: 3021060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased NADH-dependent production of reactive oxygen intermediates by microsomes after chronic ethanol consumption: comparisons with NADPH.
    Dicker E; Cederbaum AI
    Arch Biochem Biophys; 1992 Mar; 293(2):274-80. PubMed ID: 1311163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superoxide-independent reduction of vanadate by rat liver microsomes/NAD(P)H: vanadate reductase activity.
    Shi X; Dalal NS
    Arch Biochem Biophys; 1992 May; 295(1):70-5. PubMed ID: 1315507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vanadate-stimulated NADH oxidation requires polymeric vanadate, phosphate and superoxide.
    Patole MS; Gullapalli S; Ramasarma T
    Free Radic Res Commun; 1988; 4(4):201-7. PubMed ID: 2852622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vanadate-stimulated NADH oxidation in plasma membrane.
    Ramasarma T; MacKellar WC; Crane FL
    Biochim Biophys Acta; 1981 Aug; 646(1):88-98. PubMed ID: 6912071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel phenomenon of burst of oxygen uptake during decavanadate-dependent oxidation of NADH.
    Kalyani P; Ramasarma T
    Mol Cell Biochem; 1993 Apr; 121(1):21-9. PubMed ID: 8510671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of idebenone and related compounds on respiratory activities of brain mitochondria, and on lipid peroxidation of their membranes.
    Imada I; Fujita T; Sugiyama Y; Okamoto K; Kobayashi Y
    Arch Gerontol Geriatr; 1989 May; 8(3):323-41. PubMed ID: 2764646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vanadate-dependent NAD(P)H oxidation by microsomal enzymes.
    Reif DW; Coulombe RA; Aust SD
    Arch Biochem Biophys; 1989 Apr; 270(1):137-43. PubMed ID: 2494940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NADH-dependent polyvanadate reduction by microsomes.
    Patole MS; Kurup CK; Ramasarma T
    Mol Cell Biochem; 1987 Jun; 75(2):161-7. PubMed ID: 3650695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.