These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 3392543)
1. Tetanus toxin and botulinum A and C neurotoxins inhibit noradrenaline release from cultured mouse brain. Habermann E; Müller H; Hudel M J Neurochem; 1988 Aug; 51(2):522-7. PubMed ID: 3392543 [TBL] [Abstract][Full Text] [Related]
2. Tetanus toxin and botulinum A neurotoxin inhibit and at higher concentrations enhance noradrenaline outflow from particulate brain cortex in batch. Habermann E Naunyn Schmiedebergs Arch Pharmacol; 1981 Dec; 318(2):105-11. PubMed ID: 7329453 [TBL] [Abstract][Full Text] [Related]
3. Gangliosides mediate inhibitory effects of tetanus and botulinum A neurotoxins on exocytosis in chromaffin cells. Marxen P; Fuhrmann U; Bigalke H Toxicon; 1989; 27(8):849-59. PubMed ID: 2781584 [TBL] [Abstract][Full Text] [Related]
4. Inhibition by tetanus and botulinum A toxin of the release of [3H]noradrenaline and [3H]GABA from rat brain homogenate. Habermann E Experientia; 1988 Mar; 44(3):224-6. PubMed ID: 3350134 [TBL] [Abstract][Full Text] [Related]
5. Evidence for calcium-dependent vesicular transmitter release insensitive to tetanus toxin and botulinum toxin type F. Fassio A; Sala R; Bonanno G; Marchi M; Raiteri M Neuroscience; 1999 Mar; 90(3):893-902. PubMed ID: 10218789 [TBL] [Abstract][Full Text] [Related]
6. Tetanus and botulinum toxins inhibit, and black widow spider venom stimulates the release of methionine-enkephalin-like material in vitro. Janicki PK; Habermann E J Neurochem; 1983 Aug; 41(2):395-402. PubMed ID: 6875545 [TBL] [Abstract][Full Text] [Related]
7. Tetanus toxin and botulinum A toxin inhibit acetylcholine release from but not calcium uptake into brain tissue. Bigalke H; Ahnert-Hilger G; Habermann E Naunyn Schmiedebergs Arch Pharmacol; 1981 Apr; 316(2):143-8. PubMed ID: 7242701 [TBL] [Abstract][Full Text] [Related]
8. Suppression of 3H-acetylcholine release from primary nerve cell cultures by tetanus and botulinum-A toxin. Bigalke H; Dimpfel W; Habermann E Naunyn Schmiedebergs Arch Pharmacol; 1978 Jun; 303(2):133-8. PubMed ID: 673020 [TBL] [Abstract][Full Text] [Related]
9. Amylase release from streptolysin O-permeabilized pancreatic acinar cells. Effects of Ca2+, guanosine 5'-[gamma-thio]triphosphate, cyclic AMP, tetanus toxin and botulinum A toxin. Stecher B; Ahnert-Hilger G; Weller U; Kemmer TP; Gratzl M Biochem J; 1992 May; 283 ( Pt 3)(Pt 3):899-904. PubMed ID: 1375453 [TBL] [Abstract][Full Text] [Related]
10. Inhibition by clostridial neurotoxins of calcium-independent [3H]noradrenaline outflow from freeze-thawed synaptosomes: comparison with synaptobrevin hydrolysis. Hausinger A; Volknandt W; Zimmermann H; Habermann E Toxicon; 1995 Nov; 33(11):1519-30. PubMed ID: 8744991 [TBL] [Abstract][Full Text] [Related]
11. Botulinum A neurotoxin unlike tetanus toxin acts via a neuraminidase sensitive structure. Bigalke H; Müller H; Dreyer F Toxicon; 1986; 24(11-12):1065-74. PubMed ID: 3564058 [TBL] [Abstract][Full Text] [Related]
12. Use of pharmacologic antagonists to deduce commonalities of biologic activity among clostridial neurotoxins. Simpson LL J Pharmacol Exp Ther; 1988 Jun; 245(3):867-72. PubMed ID: 2455038 [TBL] [Abstract][Full Text] [Related]
13. Distinct targets for tetanus and botulinum A neurotoxins within the signal transducing pathway in chromaffin cells. Marxen P; Bartels F; Ahnert-Hilger G; Bigalke H Naunyn Schmiedebergs Arch Pharmacol; 1991 Oct; 344(4):387-95. PubMed ID: 1662774 [TBL] [Abstract][Full Text] [Related]
14. Ca2+ or Sr2+ partially rescues synaptic transmission in hippocampal cultures treated with botulinum toxin A and C, but not tetanus toxin. Capogna M; McKinney RA; O'Connor V; Gähwiler BH; Thompson SM J Neurosci; 1997 Oct; 17(19):7190-202. PubMed ID: 9295365 [TBL] [Abstract][Full Text] [Related]
15. Specific antibodies against the Zn(2+)-binding domain of clostridial neurotoxins restore exocytosis in chromaffin cells treated with tetanus or botulinum A neurotoxin. Bartels F; Bergel H; Bigalke H; Frevert J; Halpern J; Middlebrook J J Biol Chem; 1994 Mar; 269(11):8122-7. PubMed ID: 8132537 [TBL] [Abstract][Full Text] [Related]
16. Cooperative action of the light chain of tetanus toxin and the heavy chain of botulinum toxin type A on the transmitter release of mammalian motor endplates. Weller U; Dauzenroth ME; Gansel M; Dreyer F Neurosci Lett; 1991 Jan; 122(1):132-4. PubMed ID: 1676142 [TBL] [Abstract][Full Text] [Related]
17. Intracellularly injected tetanus toxin inhibits exocytosis in bovine adrenal chromaffin cells. Penner R; Neher E; Dreyer F Nature; 1986 Nov 6-12; 324(6092):76-8. PubMed ID: 3785374 [TBL] [Abstract][Full Text] [Related]
18. Protein kinase C and clostridial neurotoxins affect discrete and related steps in the secretory pathway. Bittner MA; Holz RW Cell Mol Neurobiol; 1993 Dec; 13(6):649-64. PubMed ID: 8194081 [TBL] [Abstract][Full Text] [Related]
19. Comparison of the intracellular effects of clostridial neurotoxins on exocytosis from streptolysin O-permeabilized rat pheochromocytoma (PC 12) and bovine adrenal chromaffin cells. Ahnert-Hilger G; Weller U Neuroscience; 1993 Mar; 53(2):547-52. PubMed ID: 8492915 [TBL] [Abstract][Full Text] [Related]
20. Evidence for a link between specific proteolysis and inhibition of [3H]-noradrenaline release by the light chain of tetanus toxin. Sanders D; Habermann E Naunyn Schmiedebergs Arch Pharmacol; 1992 Sep; 346(3):358-61. PubMed ID: 1407019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]