These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 33925431)
1. Backward Flux Re-Deposition Patterns during Multi-Spot Laser Ablation of Stainless Steel with Picosecond and Femtosecond Pulses in Air. Zhou T; Kraft S; Perrie W; Schille J; Löschner U; Edwardson S; Dearden G Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33925431 [TBL] [Abstract][Full Text] [Related]
2. Pulse Burst Generation and Diffraction with Spatial Light Modulators for Dynamic Ultrafast Laser Materials Processing. Fang Z; Zhou T; Perrie W; Bilton M; Schille J; Löschner U; Edwardson S; Dearden G Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556864 [TBL] [Abstract][Full Text] [Related]
3. Experimental and numerical study of multi-pulse picosecond laser ablation on 316 L stainless steel. Zhou T; Hong Y; Fang Z; Perrie W; Fei Y; Hu Y; Edwardson S; Dearden G Opt Express; 2023 Nov; 31(23):38715-38727. PubMed ID: 38017969 [TBL] [Abstract][Full Text] [Related]
4. Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates. Di Niso F; Gaudiuso C; Sibillano T; Mezzapesa FP; Ancona A; Lugarà PM Opt Express; 2014 May; 22(10):12200-10. PubMed ID: 24921340 [TBL] [Abstract][Full Text] [Related]
5. Influence of Heat Accumulation on Morphology Debris Deposition and Wetting of LIPSS on Steel upon High Repetition Rate Femtosecond Pulses Irradiation. Florian C; Fuentes-Edfuf Y; Skoulas E; Stratakis E; Sanchez-Cortes S; Solis J; Siegel J Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363059 [TBL] [Abstract][Full Text] [Related]
6. Scaling the productivity of laser structuring processes using picosecond laser pulses at average powers of up to 420 W to produce superhydrophobic surfaces on stainless steel AISI 316L. Faas S; Bielke U; Weber R; Graf T Sci Rep; 2019 Feb; 9(1):1933. PubMed ID: 30760756 [TBL] [Abstract][Full Text] [Related]
7. Threshold fluence and incubation during multi-pulse ultrafast laser ablation of quartz. De Palo R; Volpe A; Gaudiuso C; Patimisco P; Spagnolo V; Ancona A Opt Express; 2022 Dec; 30(25):44908-44917. PubMed ID: 36522904 [TBL] [Abstract][Full Text] [Related]
8. Repetition Rate Effects in Picosecond Laser Microprocessing of Aluminum and Steel in Water. Nicolae I; Bojan M; Viespe C; Miu D Micromachines (Basel); 2017 Oct; 8(11):. PubMed ID: 30400506 [TBL] [Abstract][Full Text] [Related]
9. External Field-Controlled Ablation: Magnetic Field. Maksimovic J; Ng SH; Katkus T; Cowie BCC; Juodkazis S Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31766656 [TBL] [Abstract][Full Text] [Related]
10. Systematic study of laser ablation with GHz bursts of femtosecond pulses. Bonamis G; Audouard E; Hönninger C; Lopez J; Mishchik K; Mottay E; Manek-Hönninger I Opt Express; 2020 Sep; 28(19):27702-27714. PubMed ID: 32988058 [TBL] [Abstract][Full Text] [Related]
11. Ablation of porcine ligamentum flavum with Ho:YAG, q-switched Ho:YAG, and quadrupled Nd:YAG lasers. Johnson MR; Codd PJ; Hill WM; Boettcher T Lasers Surg Med; 2015 Dec; 47(10):839-51. PubMed ID: 26415136 [TBL] [Abstract][Full Text] [Related]
12. Multi-gigahertz femtosecond pulses from linear and nonlinear propagation of a phase-modulated laser. Ye H; Pontagnier L; Cormier E; Santarelli G Opt Lett; 2022 Oct; 47(20):5405-5408. PubMed ID: 36240375 [TBL] [Abstract][Full Text] [Related]
13. Incubation during laser ablation with bursts of femtosecond pulses with picosecond delays. Gaudiuso C; Giannuzzi G; Volpe A; Lugarà PM; Choquet I; Ancona A Opt Express; 2018 Feb; 26(4):3801-3813. PubMed ID: 29475359 [TBL] [Abstract][Full Text] [Related]
14. Femtosecond laser volume ablation rate and threshold measurements by differential weighing. Pietroy D; Di Maio Y; Moine B; Baubeau E; Audouard E Opt Express; 2012 Dec; 20(28):29900-8. PubMed ID: 23388816 [TBL] [Abstract][Full Text] [Related]
15. The Influence of the Processing Parameters on the Laser-Ablation of Stainless Steel and Brass during the Engraving by Nanosecond Fiber Laser. Hribar L; Gregorčič P; Senegačnik M; Jezeršek M Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055250 [TBL] [Abstract][Full Text] [Related]
16. Influence of external cooling on the femtosecond laser ablation of dentin. Le QT; Vilar R; Bertrand C Lasers Med Sci; 2017 Dec; 32(9):1943-1951. PubMed ID: 28695365 [TBL] [Abstract][Full Text] [Related]
17. Picosecond Laser Shock Micro-Forming of Stainless Steel: Influence of High-Repetition Pulses on Thermal Effects. López JM; Munoz-Martin D; Moreno-Labella JJ; Panizo-Laiz M; Gomez-Rosas G; Molpeceres C; Morales M Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744285 [TBL] [Abstract][Full Text] [Related]
18. Polystyrene Thin Films Nanostructuring by UV Femtosecond Laser Beam: From One Spot to Large Surface. Shavdina O; Rabat H; Vayer M; Petit A; Sinturel C; Semmar N Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33919090 [TBL] [Abstract][Full Text] [Related]
19. [Effects of fluence and scanning velocity on the ablation efficiency of dentin and enamel by femtosecond laser]. Chen H; Liu J; Ge WQ; Sun YC; Wang Y; Lü PJ Zhonghua Kou Qiang Yi Xue Za Zhi; 2013 May; 48(5):299-302. PubMed ID: 24004627 [TBL] [Abstract][Full Text] [Related]
20. Wake dynamics of air filaments generated by high-energy picosecond laser pulses at 1 kHz repetition rate. Higginson A; Wang Y; Chi H; Goffin A; Larkin I; Milchberg HM; Rocca JJ Opt Lett; 2021 Nov; 46(21):5449-5452. PubMed ID: 34724498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]