These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33925794)

  • 1. Simultaneous Conduction and Valence Band Regulation of Indium-Based Quantum Dots for Efficient H
    Li XP; Huang RJ; Chen C; Li T; Gao YJ
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33925794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molybdenum disulfide quantum dots directing zinc indium sulfide heterostructures for enhanced visible light hydrogen production.
    Liu Y; Li CF; Li XY; Yu WB; Dong WD; Zhao H; Hu ZY; Deng Z; Wang C; Wu SJ; Chen H; Liu J; Wang Z; Chen LH; Li Y; Su BL
    J Colloid Interface Sci; 2019 Sep; 551():111-118. PubMed ID: 31078096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boosting photocatalytic hydrogen generation of cadmium telluride colloidal quantum dots by nickel ion doping.
    Xu J; Wang J; Chen Z; Xia X; Li S; Li Z
    J Colloid Interface Sci; 2019 Aug; 549():63-71. PubMed ID: 31022524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled Photoinduced Electron Transfer from InP/ZnS Quantum Dots through Cu Doping: A New Prototype for the Visible-Light Photocatalytic Hydrogen Evolution Reaction.
    Bang J; Das S; Yu EJ; Kim K; Lim H; Kim S; Hong JW
    Nano Lett; 2020 Sep; 20(9):6263-6271. PubMed ID: 32813529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ZnGa(2-x)In(x)S4 (0 ≤ x ≤ 0.4) and Zn(1-2y)(CuGa)(y)Ga(1.7)In(0.3)S4 (0.1 ≤ y ≤ 0.2): optimize visible light photocatalytic H2 evolution by fine modulation of band structures.
    Yang J; Fu H; Yang D; Gao W; Cong R; Yang T
    Inorg Chem; 2015 Mar; 54(5):2467-73. PubMed ID: 25695506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metallic 1T-phase MoS
    Liang Z; Sun B; Xu X; Cui H; Tian J
    Nanoscale; 2019 Jul; 11(25):12266-12274. PubMed ID: 31210228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum dots in photocatalytic applications: efficiently enhancing visible light photocatalytic activity by integrating CdO quantum dots as sensitizers.
    Reshak AH
    Phys Chem Chem Phys; 2017 Sep; 19(36):24915-24927. PubMed ID: 28872182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrathin Two-Dimensional ZnIn
    Li X; Lu S; Yi J; Shen L; Chen Z; Xue H; Qian Q; Yang MQ
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25297-25307. PubMed ID: 35605284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enabling Visible-Light-Driven Selective CO
    Wang J; Xia T; Wang L; Zheng X; Qi Z; Gao C; Zhu J; Li Z; Xu H; Xiong Y
    Angew Chem Int Ed Engl; 2018 Dec; 57(50):16447-16451. PubMed ID: 30350910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cadmium sulfide quantum dots supported on gallium and indium oxide for visible-light-driven hydrogen evolution from water.
    Pan YX; Zhuang H; Hong J; Fang Z; Liu H; Liu B; Huang Y; Xu R
    ChemSusChem; 2014 Sep; 7(9):2537-44. PubMed ID: 25045039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trace Cu
    Li K; Ding L; Li J; Liu S; Fang F; Guo D; Chang K
    J Colloid Interface Sci; 2023 Jul; 641():239-250. PubMed ID: 36933470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bandgap- and Radial-Position-Dependent Mn-Doped Zn-Cu-In-S/ZnS Core/Shell Nanocrystals.
    Peng L; Huang K; Zhang Z; Zhang Y; Shi Z; Xie R; Yang W
    Chemphyschem; 2016 Mar; 17(5):752-8. PubMed ID: 26419419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of Reverse Type-II InP/Zn
    Xu D; Shen LL; Qin ZK; Yan S; Wang N; Wang J; Gao YJ
    Inorg Chem; 2024 Jul; 63(27):12582-12592. PubMed ID: 38917407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitation dependent multicolor emission and photoconductivity of Mn, Cu doped In2S3 monodisperse quantum dots.
    Ghosh S; Saha M; Ashok VD; Chatterjee A; De SK
    Nanotechnology; 2016 Apr; 27(15):155708. PubMed ID: 26934114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergy of Cd Doping and S Vacancies in Cd
    Niu Y; Li YY; Wang J; Wang H; Wang B; Xu J; Tian M; Lin H; Wang L
    Inorg Chem; 2023 Apr; 62(14):5690-5699. PubMed ID: 36961767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel noble-metal-free Mo
    Ma X; Ren C; Li H; Liu X; Li X; Han K; Li W; Zhan Y; Khan A; Chang Z; Sun C; Zhou H
    J Colloid Interface Sci; 2021 Jan; 582(Pt B):488-495. PubMed ID: 32911397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustainable hydrogen production for the greener environment by quantum dots-based efficient photocatalysts: A review.
    Rao VN; Reddy NL; Kumari MM; Cheralathan KK; Ravi P; Sathish M; Neppolian B; Reddy KR; Shetti NP; Prathap P; Aminabhavi TM; Shankar MV
    J Environ Manage; 2019 Oct; 248():109246. PubMed ID: 31323456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocatalytic hydrogen evolution from glycerol and water over nickel-hybrid cadmium sulfide quantum dots under visible-light irradiation.
    Wang JJ; Li ZJ; Li XB; Fan XB; Meng QY; Yu S; Li CB; Li JX; Tung CH; Wu LZ
    ChemSusChem; 2014 May; 7(5):1468-75. PubMed ID: 24692310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper-indium-selenide quantum dot-sensitized solar cells.
    Yang J; Kim JY; Yu JH; Ahn TY; Lee H; Choi TS; Kim YW; Joo J; Ko MJ; Hyeon T
    Phys Chem Chem Phys; 2013 Dec; 15(47):20517-25. PubMed ID: 24177572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MoS
    Wang Q; Huang J; Sun H; Ng YH; Zhang KQ; Lai Y
    ChemSusChem; 2018 May; 11(10):1708-1721. PubMed ID: 29573571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.