BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 33925823)

  • 1. Methods for Identifying Microbial Natural Product Compounds that Target Kinetoplastid RNA Structural Motifs by Homology and De Novo Modeled 18S rRNA.
    Mwangi HN; Muge EK; Wagacha PW; Ndakala A; Mulaa FJ
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33925823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput screening platform for natural product-based drug discovery against 3 neglected tropical diseases: human African trypanosomiasis, leishmaniasis, and Chagas disease.
    Annang F; Pérez-Moreno G; García-Hernández R; Cordon-Obras C; Martín J; Tormo JR; Rodríguez L; de Pedro N; Gómez-Pérez V; Valente M; Reyes F; Genilloud O; Vicente F; Castanys S; Ruiz-Pérez LM; Navarro M; Gamarro F; González-Pacanowska D
    J Biomol Screen; 2015 Jan; 20(1):82-91. PubMed ID: 25332350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward a Drug Against All Kinetoplastids: From LeishBox to Specific and Potent Trypanothione Reductase Inhibitors.
    Ilari A; Genovese I; Fiorillo F; Battista T; De Ionna I; Fiorillo A; Colotti G
    Mol Pharm; 2018 Aug; 15(8):3069-3078. PubMed ID: 29897765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening a Natural Product-Based Library against Kinetoplastid Parasites.
    Zulfiqar B; Jones AJ; Sykes ML; Shelper TB; Davis RA; Avery VM
    Molecules; 2017 Oct; 22(10):. PubMed ID: 29023425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The potential role of in silico approaches to identify novel bioactive molecules from natural resources.
    Olğaç A; Orhan IE; Banoglu E
    Future Med Chem; 2017 Sep; 9(14):1665-1686. PubMed ID: 28841048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetoplastid flagellates overlooked by universal primers dominate in the oxygenated hypolimnion of Lake Biwa, Japan.
    Mukherjee I; Hodoki Y; Nakano S
    FEMS Microbiol Ecol; 2015 Aug; 91(8):fiv083. PubMed ID: 26187480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction Networks of Ribosomal Expansion Segments in Kinetoplastids.
    Vicens Q; Bochler A; Jobe A; Frank J; Hashem Y
    Subcell Biochem; 2021; 96():433-450. PubMed ID: 33252739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Overview on Target-Based Drug Design against Kinetoplastid Protozoan Infections: Human African Trypanosomiasis, Chagas Disease and Leishmaniases.
    Kourbeli V; Chontzopoulou E; Moschovou K; Pavlos D; Mavromoustakos T; Papanastasiou IP
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An updated view of kinetoplastid phylogeny using environmental sequences and a closer outgroup: proposal for a new classification of the class Kinetoplastea.
    Moreira D; López-García P; Vickerman K
    Int J Syst Evol Microbiol; 2004 Sep; 54(Pt 5):1861-1875. PubMed ID: 15388756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying natural compounds as multi-target-directed ligands against Alzheimer's disease: an in silico approach.
    Ambure P; Bhat J; Puzyn T; Roy K
    J Biomol Struct Dyn; 2019 Mar; 37(5):1282-1306. PubMed ID: 29578387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of Non-Peptidic Compounds against Chagas Disease Applying Pharmacophore Guided Molecular Modelling Approaches.
    Rampogu S; Lee G; Baek A; Son M; Park C; Zeb A; Yoon SH; Park S; Lee KW
    Molecules; 2018 Nov; 23(12):. PubMed ID: 30469538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-transcriptional Modifications Modulate rRNA Structure and Ligand Interactions.
    Jiang J; Seo H; Chow CS
    Acc Chem Res; 2016 May; 49(5):893-901. PubMed ID: 27064497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cryo-EM Structure of a Novel 40S Kinetoplastid-Specific Ribosomal Protein.
    Brito Querido J; Mancera-Martínez E; Vicens Q; Bochler A; Chicher J; Simonetti A; Hashem Y
    Structure; 2017 Dec; 25(12):1785-1794.e3. PubMed ID: 29107485
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Kwofie SK; Dankwa B; Odame EA; Agamah FE; Doe LPA; Teye J; Agyapong O; Miller WA; Mosi L; Wilson MD
    Molecules; 2018 Jun; 23(7):. PubMed ID: 29954088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Potential of Secondary Metabolites from Plants as Drugs or Leads against Protozoan Neglected Diseases-Part III: In-Silico Molecular Docking Investigations.
    Ogungbe IV; Setzer WN
    Molecules; 2016 Oct; 21(10):. PubMed ID: 27775577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potentials of marine natural products against malaria, leishmaniasis, and trypanosomiasis parasites: a review of recent articles.
    Nweze JA; Mbaoji FN; Li YM; Yang LY; Huang SS; Chigor VN; Eze EA; Pan LX; Zhang T; Yang DF
    Infect Dis Poverty; 2021 Jan; 10(1):9. PubMed ID: 33482912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular docking, QSAR and ADMET based mining of natural compounds against prime targets of HIV.
    Vora J; Patel S; Sinha S; Sharma S; Srivastava A; Chhabria M; Shrivastava N
    J Biomol Struct Dyn; 2019 Jan; 37(1):131-146. PubMed ID: 29268664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neobodonids are dominant kinetoplastids in the global ocean.
    Flegontova O; Flegontov P; Malviya S; Poulain J; de Vargas C; Bowler C; Lukeš J; Horák A
    Environ Microbiol; 2018 Feb; 20(2):878-889. PubMed ID: 29266706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual screening for the discovery of bioactive natural products.
    Rollinger JM; Stuppner H; Langer T
    Prog Drug Res; 2008; 65():211, 213-49. PubMed ID: 18084917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KISS: the kinetoplastid RNA editing sequence search tool.
    Ochsenreiter T; Cipriano M; Hajduk SL
    RNA; 2007 Jan; 13(1):1-4. PubMed ID: 17123956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.