These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 33925874)

  • 1. Lateral Degassing Method for Disposable Film-Chip Microfluidic Devices.
    Park S; Cho H; Kim J; Han KH
    Membranes (Basel); 2021 Apr; 11(5):. PubMed ID: 33925874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A disposable microfluidic device with a reusable magnetophoretic functional substrate for isolation of circulating tumor cells.
    Cho H; Kim J; Jeon CW; Han KH
    Lab Chip; 2017 Nov; 17(23):4113-4123. PubMed ID: 29094741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A disposable smart microfluidic platform integrated with on-chip flow sensors.
    Kim J; Cho H; Kim J; Park JS; Han KH
    Biosens Bioelectron; 2021 Mar; 176():112897. PubMed ID: 33342692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructured Substrate-Mediated Bubble Degassing in Microfluidic Systems.
    Lee S; Kim H; Lim H; Nam Y; Lee S; Kim H
    Langmuir; 2024 Apr; 40(16):8630-8635. PubMed ID: 38587497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. dDrop-Chip: disposable film-chip microfluidic device for real-time droplet feedback control.
    Ryu J; Kim J; Han KH
    Lab Chip; 2023 Mar; 23(7):1896-1904. PubMed ID: 36877075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bubble removal with the use of a vacuum pressure generated by a converging-diverging nozzle.
    Christoforidis T; Ng C; Eddington DT
    Biomed Microdevices; 2017 Sep; 19(3):58. PubMed ID: 28646280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Permeation-Enhanced Degassing Method Based on Xylem Embolism Repair and Gas Permeable Materials.
    Guo L; Shan J; Ran P; Yin S; Liu C; Li J
    Langmuir; 2022 Oct; 38(40):12373-12381. PubMed ID: 36171077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Bubble-Free Microfluidic Device for Easy-to-Operate Immobilization, Culturing and Monitoring of Zebrafish Embryos.
    Zhu Z; Geng Y; Yuan Z; Ren S; Liu M; Meng Z; Pan D
    Micromachines (Basel); 2019 Feb; 10(3):. PubMed ID: 30823425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vacuum pouch microfluidic system and its application for thin-film micromixers.
    Lee CJ; Hsu YH
    Lab Chip; 2019 Aug; 19(17):2834-2843. PubMed ID: 31353372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Air trap and removal on a pressure driven PDMS-based microfluidic device.
    Xu F; Ma L; Fan Y
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38739426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reusable acoustic tweezers for disposable devices.
    Guo F; Xie Y; Li S; Lata J; Ren L; Mao Z; Ren B; Wu M; Ozcelik A; Huang TJ
    Lab Chip; 2015 Dec; 15(24):4517-23. PubMed ID: 26507411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Scalable, Modular Degasser for Passive In-Line Removal of Bubbles from Biomicrofluidic Devices.
    Musgrove HB; Saleheen A; Zatorski JM; Arneja A; Luckey CJ; Pompano RR
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic resonant cavities enable acoustophoresis on a disposable superstrate.
    Witte C; Reboud J; Wilson R; Cooper JM; Neale SL
    Lab Chip; 2014 Nov; 14(21):4277-83. PubMed ID: 25224539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-demand acoustic droplet splitting and steering in a disposable microfluidic chip.
    Park J; Jung JH; Park K; Destgeer G; Ahmed H; Ahmad R; Sung HJ
    Lab Chip; 2018 Jan; 18(3):422-432. PubMed ID: 29220055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capillarity induced solvent-actuated bonding of polymeric microfluidic devices.
    Shah JJ; Geist J; Locascio LE; Gaitan M; Rao MV; Vreeland WN
    Anal Chem; 2006 May; 78(10):3348-53. PubMed ID: 16689536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple and low-cost production of hybrid 3D-printed microfluidic devices.
    Duong LH; Chen PC
    Biomicrofluidics; 2019 Mar; 13(2):024108. PubMed ID: 31065307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustothermal tweezer for droplet sorting in a disposable microfluidic chip.
    Park J; Jung JH; Destgeer G; Ahmed H; Park K; Sung HJ
    Lab Chip; 2017 Mar; 17(6):1031-1040. PubMed ID: 28243644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple and reversible glass-glass bonding method to construct a microfluidic device and its application for cell recovery.
    Funano SI; Ota N; Tanaka Y
    Lab Chip; 2021 Jun; 21(11):2244-2254. PubMed ID: 33908537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of Thin-Liquid Films Surrounding Bubbles in Microfluidics and Their Impact on the Pressure Drop and Fluid Movement.
    Chao C; Jin X; Fan X
    Langmuir; 2020 Dec; 36(49):15102-15111. PubMed ID: 33283522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A membrane-based, high-efficiency, microfluidic debubbler.
    Liu C; Thompson JA; Bau HH
    Lab Chip; 2011 May; 11(9):1688-93. PubMed ID: 21445396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.