BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33925874)

  • 1. Lateral Degassing Method for Disposable Film-Chip Microfluidic Devices.
    Park S; Cho H; Kim J; Han KH
    Membranes (Basel); 2021 Apr; 11(5):. PubMed ID: 33925874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A disposable microfluidic device with a reusable magnetophoretic functional substrate for isolation of circulating tumor cells.
    Cho H; Kim J; Jeon CW; Han KH
    Lab Chip; 2017 Nov; 17(23):4113-4123. PubMed ID: 29094741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A disposable smart microfluidic platform integrated with on-chip flow sensors.
    Kim J; Cho H; Kim J; Park JS; Han KH
    Biosens Bioelectron; 2021 Mar; 176():112897. PubMed ID: 33342692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructured Substrate-Mediated Bubble Degassing in Microfluidic Systems.
    Lee S; Kim H; Lim H; Nam Y; Lee S; Kim H
    Langmuir; 2024 Apr; 40(16):8630-8635. PubMed ID: 38587497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. dDrop-Chip: disposable film-chip microfluidic device for real-time droplet feedback control.
    Ryu J; Kim J; Han KH
    Lab Chip; 2023 Mar; 23(7):1896-1904. PubMed ID: 36877075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bubble removal with the use of a vacuum pressure generated by a converging-diverging nozzle.
    Christoforidis T; Ng C; Eddington DT
    Biomed Microdevices; 2017 Sep; 19(3):58. PubMed ID: 28646280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Permeation-Enhanced Degassing Method Based on Xylem Embolism Repair and Gas Permeable Materials.
    Guo L; Shan J; Ran P; Yin S; Liu C; Li J
    Langmuir; 2022 Oct; 38(40):12373-12381. PubMed ID: 36171077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Bubble-Free Microfluidic Device for Easy-to-Operate Immobilization, Culturing and Monitoring of Zebrafish Embryos.
    Zhu Z; Geng Y; Yuan Z; Ren S; Liu M; Meng Z; Pan D
    Micromachines (Basel); 2019 Feb; 10(3):. PubMed ID: 30823425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vacuum pouch microfluidic system and its application for thin-film micromixers.
    Lee CJ; Hsu YH
    Lab Chip; 2019 Aug; 19(17):2834-2843. PubMed ID: 31353372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Air trap and removal on a pressure driven PDMS-based microfluidic device.
    Xu F; Ma L; Fan Y
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38739426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eliminating air bubble in microfluidic systems utilizing integrated in-line sloped microstructures.
    Huang C; Wippold JA; Stratis-Cullum D; Han A
    Biomed Microdevices; 2020 Oct; 22(4):76. PubMed ID: 33090275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reusable acoustic tweezers for disposable devices.
    Guo F; Xie Y; Li S; Lata J; Ren L; Mao Z; Ren B; Wu M; Ozcelik A; Huang TJ
    Lab Chip; 2015 Dec; 15(24):4517-23. PubMed ID: 26507411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Scalable, Modular Degasser for Passive In-Line Removal of Bubbles from Biomicrofluidic Devices.
    Musgrove HB; Saleheen A; Zatorski JM; Arneja A; Luckey CJ; Pompano RR
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic resonant cavities enable acoustophoresis on a disposable superstrate.
    Witte C; Reboud J; Wilson R; Cooper JM; Neale SL
    Lab Chip; 2014 Nov; 14(21):4277-83. PubMed ID: 25224539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-demand acoustic droplet splitting and steering in a disposable microfluidic chip.
    Park J; Jung JH; Park K; Destgeer G; Ahmed H; Ahmad R; Sung HJ
    Lab Chip; 2018 Jan; 18(3):422-432. PubMed ID: 29220055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capillarity induced solvent-actuated bonding of polymeric microfluidic devices.
    Shah JJ; Geist J; Locascio LE; Gaitan M; Rao MV; Vreeland WN
    Anal Chem; 2006 May; 78(10):3348-53. PubMed ID: 16689536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple and low-cost production of hybrid 3D-printed microfluidic devices.
    Duong LH; Chen PC
    Biomicrofluidics; 2019 Mar; 13(2):024108. PubMed ID: 31065307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustothermal tweezer for droplet sorting in a disposable microfluidic chip.
    Park J; Jung JH; Destgeer G; Ahmed H; Park K; Sung HJ
    Lab Chip; 2017 Mar; 17(6):1031-1040. PubMed ID: 28243644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple and reversible glass-glass bonding method to construct a microfluidic device and its application for cell recovery.
    Funano SI; Ota N; Tanaka Y
    Lab Chip; 2021 Jun; 21(11):2244-2254. PubMed ID: 33908537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of Thin-Liquid Films Surrounding Bubbles in Microfluidics and Their Impact on the Pressure Drop and Fluid Movement.
    Chao C; Jin X; Fan X
    Langmuir; 2020 Dec; 36(49):15102-15111. PubMed ID: 33283522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.