These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Hydroxycinnamic Acids and Their Derivatives in Bento-Silva A; Duarte N; Mecha E; Belo M; Vaz Patto MC; Bronze MDR Foods; 2020 Oct; 9(10):. PubMed ID: 33076483 [TBL] [Abstract][Full Text] [Related]
3. Shedding Light on the Volatile Composition of Bento-Silva A; Duarte N; Belo M; Mecha E; Carbas B; Brites C; Vaz Patto MC; Bronze MR Biomolecules; 2021 Sep; 11(10):. PubMed ID: 34680029 [TBL] [Abstract][Full Text] [Related]
4. Comprehensive Two-Dimensional Gas Chromatography as a Powerful Strategy for the Exploration of Bento-Silva A; Duarte N; Santos M; Costa CP; Vaz Patto MC; Rocha SM; Bronze MR Molecules; 2022 Apr; 27(9):. PubMed ID: 35566076 [No Abstract] [Full Text] [Related]
5. Changes in Phenolic Acid Content in Maize during Food Product Processing. Butts-Wilmsmeyer CJ; Mumm RH; Rausch KD; Kandhola G; Yana NA; Happ MM; Ostezan A; Wasmund M; Bohn MO J Agric Food Chem; 2018 Apr; 66(13):3378-3385. PubMed ID: 29547690 [TBL] [Abstract][Full Text] [Related]
6. Profile of phenolic acids, antioxidant activity and total phenolic compounds during blue corn tortilla processing and its bioaccessibility. Méndez-Lagunas LL; Cruz-Gracida M; Barriada-Bernal LG; Rodríguez-Méndez LI J Food Sci Technol; 2020 Dec; 57(12):4688-4696. PubMed ID: 33087979 [TBL] [Abstract][Full Text] [Related]
7. Compositional Variation in Zavala-López M; Flint-García S; García-Lara S Front Nutr; 2020; 7():600747. PubMed ID: 33415122 [TBL] [Abstract][Full Text] [Related]
8. Hydroxycinnamic acid amide (HCAA) derivatives, flavonoid C-glycosides, phenolic acids and antioxidant properties of foxtail millet. Xiang J; Zhang M; Apea-Bah FB; Beta T Food Chem; 2019 Oct; 295():214-223. PubMed ID: 31174752 [TBL] [Abstract][Full Text] [Related]
9. Comprehensive evaluation on phenolic derivatives and antioxidant activities of diverse yellow maize varieties. Zhang J; Liu J; Han Z; He X; Herrera-Balandrano DD; Xiang J Food Chem; 2025 Feb; 464(Pt 1):141602. PubMed ID: 39395335 [TBL] [Abstract][Full Text] [Related]
10. Consumer-Driven Improvement of Maize Bread Formulations with Legume Fortification. Cunha LM; Fonseca SC; Lima RC; Loureiro J; Pinto AS; Vaz Patto MC; Brites C Foods; 2019 Jun; 8(7):. PubMed ID: 31261960 [TBL] [Abstract][Full Text] [Related]
11. Quantitative Genetic Analysis of Hydroxycinnamic Acids in Maize ( Butts-Wilmsmeyer CJ; Mumm RH; Bohn MO J Agric Food Chem; 2020 Sep; 68(35):9585-9593. PubMed ID: 32786871 [TBL] [Abstract][Full Text] [Related]
12. Tracing transgenic maize as affected by breadmaking process and raw material for the production of a traditional maize bread, broa. Fernandes TJ; Oliveira MB; Mafra I Food Chem; 2013 May; 138(1):687-92. PubMed ID: 23265541 [TBL] [Abstract][Full Text] [Related]
13. Influence of water biscuit processing and kernel puffing on the phenolic acid content and the antioxidant activity of einkorn and bread wheat. Hidalgo A; Yilmaz VA; Brandolini A J Food Sci Technol; 2016 Jan; 53(1):541-50. PubMed ID: 26787973 [TBL] [Abstract][Full Text] [Related]
14. Bioprocessed Wheat Ingredients: Characterization, Bioaccessibility of Phenolic Compounds, and Bioactivity During Tomé-Sánchez I; Martín-Diana AB; Peñas E; Frias J; Rico D; Jiménez-Pulido I; Martínez-Villaluenga C Front Plant Sci; 2021; 12():790898. PubMed ID: 35003179 [TBL] [Abstract][Full Text] [Related]
15. A Generalized Method for Determining Free Soluble Phenolic Acid Composition and Antioxidant Capacity of Cereals and Legumes. Apea-Bah FB; Drawbridge P; Beta T J Vis Exp; 2022 Jun; (184):. PubMed ID: 35758680 [TBL] [Abstract][Full Text] [Related]
16. Phenolic Acids Profiles and Cellular Antioxidant Activity in Tortillas Produced from Mexican Maize Landrace Processed by Nixtamalization and Lime Extrusion Cooking. Gaxiola-Cuevas N; Mora-Rochín S; Cuevas-Rodriguez EO; León-López L; Reyes-Moreno C; Montoya-Rodríguez A; Milán-Carrillo J Plant Foods Hum Nutr; 2017 Sep; 72(3):314-320. PubMed ID: 28852927 [TBL] [Abstract][Full Text] [Related]
17. Bioaccessibility of phenolic acids in Canadian hulless barley varieties. Drawbridge PC; Apea-Bah F; Silveira Hornung P; Beta T Food Chem; 2021 Oct; 358():129905. PubMed ID: 33940288 [TBL] [Abstract][Full Text] [Related]
18. Changes in phenolic profiles and antioxidant activities during the whole wheat bread-making process. Tian W; Chen G; Tilley M; Li Y Food Chem; 2021 May; 345():128851. PubMed ID: 33333355 [TBL] [Abstract][Full Text] [Related]
19. Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. Al-Farsi M; Alasalvar C; Morris A; Baron M; Shahidi F J Agric Food Chem; 2005 Sep; 53(19):7592-9. PubMed ID: 16159191 [TBL] [Abstract][Full Text] [Related]
20. Bioaccessibility and Gut Metabolism of Free and Melanoidin-Bound Phenolic Compounds From Coffee and Bread. Alves G; Lobo LA; Domingues RMCP; Monteiro M; Perrone D Front Nutr; 2021; 8():708928. PubMed ID: 34381807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]