These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33926001)

  • 1. An Experimental Investigation of Controlled Changes in Wettability of Laser-Treated Surfaces after Various Post Treatment Methods.
    Primus T; Zeman P; Brajer J; Kožmín P; Syrovátka Š
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33926001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comment on "Bioinspired Reversible Switch between Underwater Superoleophobicity/Superaerophobicity and Oleophilicity/Aerophilicity and Improved Antireflective Property on the Nanosecond Laser-Ablated Superhydrophobic Titanium Surfaces".
    Gregorčič P
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2117-2127. PubMed ID: 32208637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser surface structuring of AZ31 Mg alloy for controlled wettability.
    Gökhan Demir A; Furlan V; Lecis N; Previtali B
    Biointerphases; 2014 Jun; 9(2):029009. PubMed ID: 24985213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the wettability transition of nanosecond laser ablated surface under ambient air exposure.
    Yang Z; Liu X; Tian Y
    J Colloid Interface Sci; 2019 Jan; 533():268-277. PubMed ID: 30170278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superhydrophobic Surface Preparation and Wettability Transition of Titanium Alloy with Micro/Nano Hierarchical Texture.
    Yang Z; Zhu C; Zheng N; Le D; Zhou J
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30405075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wettability Transition of the Picosecond Laser-Ablated 304 Stainless-Steel Surface via Low-Vacuum Heat Treatment.
    Ma C; Kang M; Ndiithi NJ; Wang X
    Langmuir; 2021 Dec; 37(49):14314-14322. PubMed ID: 34865489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Chemical Solvents on the Wetting Behavior Over Time of Femtosecond Laser Structured Ti6Al4V Surfaces.
    Schnell G; Polley C; Bartling S; Seitz H
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32604739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-Term Influence of Laser-Processing Parameters on (Super)hydrophobicity Development and Stability of Stainless-Steel Surfaces.
    Gregorčič P; Conradi M; Hribar L; Hočevar M
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30423878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in the Laser-Processed Ti6Al4V Titanium Alloy Surface Observed by Using Raman Spectroscopy.
    Dudek M; Wawryniuk Z; Nesteruk M; Rosowski A; Cichomski M; Kozicki M; Święcik R
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of a Superhydrophobic H59 Brass Surface by Using Laser Texturing via Post Thermal Annealing.
    Lu X; Kang L; Yan B; Lei T; Zheng G; Xie H; Sun J; Jiang K
    Micromachines (Basel); 2020 Nov; 11(12):. PubMed ID: 33260379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scalable Wettability Modification of Aluminum Surface through Single-Shot Nanosecond Laser Processing.
    Ngo CV; Liu Y; Li W; Yang J; Guo C
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of the Surface Nano-Roughness on the Wettability Performance of Microstructured Metallic Surface Using Direct Laser Interference Patterning.
    Aguilar-Morales AI; Alamri S; Voisiat B; Kunze T; Lasagni AF
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31461830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wettability Analysis of Water on Metal/Semiconductor Phases Selectively Structured with Femtosecond Laser-Induced Periodic Surface Structures.
    Weber FR; Kunz C; Gräf S; Rettenmayr M; Müller FA
    Langmuir; 2019 Nov; 35(47):14990-14998. PubMed ID: 31687824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Femtosecond laser controlled wettability of solid surfaces.
    Yong J; Chen F; Yang Q; Hou X
    Soft Matter; 2015 Dec; 11(46):8897-906. PubMed ID: 26415826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the Fabrication of Super-Hydrophobic Surface on Inconel Alloy via Nanosecond Laser Ablation.
    Yang Z; Tian Y; Zhao Y; Yang C
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30654480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Droplet state and mechanism of contact line movement on laser-textured aluminum alloy surfaces.
    Kuznetsov GV; Feoktistov DV; Orlova EG; Zykov IY; Islamova AG
    J Colloid Interface Sci; 2019 Oct; 553():557-566. PubMed ID: 31238226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air.
    Long J; Zhong M; Zhang H; Fan P
    J Colloid Interface Sci; 2015 Mar; 441():1-9. PubMed ID: 25481645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Ultrasonic Cleaning on the Secondary Electron Yield, Surface Topography, and Surface Chemistry of Laser Treated Aluminum Alloy.
    Wang J; Gao Y; You Z; Fan J; Zhang J; Wang S; Xu Z
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel functionalization of Ti-V alloy and Ti-II using atomic layer deposition for improved surface wettability.
    Patel S; Butt A; Tao Q; Rossero A JI; Royhman D; Sukotjo C; Takoudis CG
    Colloids Surf B Biointerfaces; 2014 Mar; 115():280-5. PubMed ID: 24384144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-Demand Wettability via Combining fs Laser Surface Structuring and Thermal Post-Treatment.
    Čereška D; Žemaitis A; Kontenis G; Nemickas G; Jonušauskas L
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.