These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33926001)

  • 21. The Tuning of LIPSS Wettability during Laser Machining and through Post-Processing.
    Wood MJ; Servio P; Kietzig AM
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33920107
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insights into the Correlation between Residual Stresses, Phase Transformation, and Wettability of Femtosecond Laser-Irradiated Ductile Iron.
    Kumar D; Liedl G; Otto A; Artner W
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35457982
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface Wettability and Electrical Resistance Analysis of Droplets on Indium-Tin-Oxide Glass Fabricated Using an Ultraviolet Laser System.
    Tsai HY; Hsu CN; Li CR; Lin YH; Hsiao WT; Huang KC; Yeh JA
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33401451
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wettability studies of topologically distinct titanium surfaces.
    Kulkarni M; Patil-Sen Y; Junkar I; Kulkarni CV; Lorenzetti M; Iglič A
    Colloids Surf B Biointerfaces; 2015 May; 129():47-53. PubMed ID: 25819365
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation and Wettability Analysis of Metal Biofunctional Surfaces Based on the Microquadrangular Structure.
    Yang L; Zhang X; Zhai Y; Xi T
    Langmuir; 2024 Jun; 40(24):12721-12728. PubMed ID: 38843494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wettability changes of TiO2 nanotube surfaces.
    Shin DH; Shokuhfar T; Choi CK; Lee SH; Friedrich C
    Nanotechnology; 2011 Aug; 22(31):315704. PubMed ID: 21727317
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fast Transport of Water Droplets over a Thermo-Switchable Surface Using Rewritable Wettability Gradient.
    Banuprasad TN; Vinay TV; Subash CK; Varghese S; George SD; Varanakkottu SN
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):28046-28054. PubMed ID: 28750164
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial variations and temporal metastability of the self-cleaning and superhydrophobic properties of damselfly wings.
    Hasan J; Webb HK; Truong VK; Watson GS; Watson JA; Tobin MJ; Gervinskas G; Juodkazis S; Wang JY; Crawford RJ; Ivanova EP
    Langmuir; 2012 Dec; 28(50):17404-9. PubMed ID: 23181510
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of Adhesive Resistance Surface with Low Wettability on Ti6Al4V Alloys by Electro-Brush Plating.
    Dong X; Meng J; Zhou H; Xu R; Bai X; Zhang H
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30669272
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wettability control of polymeric microstructures replicated from laser-patterned stamps.
    Fu Y; Soldera M; Wang W; Milles S; Deng K; Voisiat B; Nielsch K; Lasagni AF
    Sci Rep; 2020 Dec; 10(1):22428. PubMed ID: 33380738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laser surface modification of AZ31B Mg alloy for bio-wettability.
    Ho YH; Vora HD; Dahotre NB
    J Biomater Appl; 2015 Feb; 29(7):915-28. PubMed ID: 25201909
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface roughness and wettability of dentin ablated with ultrashort pulsed laser.
    Liu J; Lü P; Sun Y; Wang Y
    J Biomed Opt; 2015 May; 20(5):55006. PubMed ID: 26018789
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlling the wettability of stainless steel from highly-hydrophilic to super-hydrophobic by femtosecond laser-induced ripples and nanospikes.
    Žemaitis A; Mimidis A; Papadopoulos A; Gečys P; Račiukaitis G; Stratakis E; Gedvilas M
    RSC Adv; 2020 Oct; 10(62):37956-37961. PubMed ID: 35515197
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoparticle-induced morphology and hydrophilicity of structured surfaces.
    Gao N; Yan Y; Chen X; Mee DJ
    Langmuir; 2012 Aug; 28(33):12256-65. PubMed ID: 22839729
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of Hydrophilic Surface on Rigid Gas Permeable Contact Lenses to Enhance the Wettability Using Ultraviolet Laser System.
    Tsai HY; Hsieh YC; Lin YH; Chang HC; Tang YH; Huang KC
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31200486
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Laser-induced wettability gradient surface on NiTi alloy for improved hemocompatibility and flow resistance.
    Zhang Q; Dong J; Peng M; Yang Z; Wan Y; Yao F; Zhou J; Ouyang C; Deng X; Luo H
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110847. PubMed ID: 32279801
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wettability and dynamics of water droplet on a snail shell.
    Maeda H; Yamagishi R; Ishida EH; Kasuga T
    J Colloid Interface Sci; 2019 Jul; 547():111-116. PubMed ID: 30947095
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Balling Behavior of Selective Laser Melting (SLM) Magnesium Alloy.
    Liu S; Guo H
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32824450
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of deposition parameters on the wettability and microstructure of superhydrophobic films with hierarchical micro-nano structures.
    Basu BJ; Manasa J
    J Colloid Interface Sci; 2011 Nov; 363(2):655-62. PubMed ID: 21864844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.