These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 33926372)

  • 1. Searching for universal model of amyloid signaling motifs using probabilistic context-free grammars.
    Dyrka W; Gąsior-Głogowska M; Szefczyk M; Szulc N
    BMC Bioinformatics; 2021 Apr; 22(1):222. PubMed ID: 33926372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating probabilistic context-free grammars for proteins using contact map constraints.
    Dyrka W; Pyzik M; Coste F; Talibart H
    PeerJ; 2019; 7():e6559. PubMed ID: 30918754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discriminative motif discovery in DNA and protein sequences using the DEME algorithm.
    Redhead E; Bailey TL
    BMC Bioinformatics; 2007 Oct; 8():385. PubMed ID: 17937785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A grammar based methodology for structural motif finding in ncRNA database search.
    Quest D; Tapprich W; Ali H
    Comput Syst Bioinformatics Conf; 2007; 6():215-25. PubMed ID: 17951826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of NLR-associated Amyloid Signaling Motifs in Bacterial Genomes.
    Dyrka W; Coustou V; Daskalov A; Lends A; Bardin T; Berbon M; Kauffmann B; Blancard C; Salin B; Loquet A; Saupe SJ
    J Mol Biol; 2020 Nov; 432(23):6005-6027. PubMed ID: 33058872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probabilistic variable-length segmentation of protein sequences for discriminative motif discovery (DiMotif) and sequence embedding (ProtVecX).
    Asgari E; McHardy AC; Mofrad MRK
    Sci Rep; 2019 Mar; 9(1):3577. PubMed ID: 30837494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metamotifs--a generative model for building families of nucleotide position weight matrices.
    Piipari M; Down TA; Hubbard TJ
    BMC Bioinformatics; 2010 Jun; 11():348. PubMed ID: 20579334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A stochastic context free grammar based framework for analysis of protein sequences.
    Dyrka W; Nebel JC
    BMC Bioinformatics; 2009 Oct; 10():323. PubMed ID: 19814800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partial Prion Cross-Seeding between Fungal and Mammalian Amyloid Signaling Motifs.
    Bardin T; Daskalov A; Barrouilhet S; Granger-Farbos A; Salin B; Blancard C; Kauffmann B; Saupe SJ; Coustou V
    mBio; 2021 Feb; 12(1):. PubMed ID: 33563842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A sequence alignment-independent method for protein classification.
    Vries JK; Munshi R; Tobi D; Klein-Seetharaman J; Benos PV; Bahar I
    Appl Bioinformatics; 2004; 3(2-3):137-48. PubMed ID: 15693739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast model-based protein homology detection without alignment.
    Hochreiter S; Heusel M; Obermayer K
    Bioinformatics; 2007 Jul; 23(14):1728-36. PubMed ID: 17488755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A sequential method for discovering probabilistic motifs in proteins.
    Blekas K; Fotiadis DI; Likas A
    Methods Inf Med; 2004; 43(1):9-12. PubMed ID: 15026827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring a diverse world of effector domains and amyloid signaling motifs in fungal NLR proteins.
    Wojciechowski JW; Tekoglu E; Gąsior-Głogowska M; Coustou V; Szulc N; Szefczyk M; Kopaczyńska M; Saupe SJ; Dyrka W
    PLoS Comput Biol; 2022 Dec; 18(12):e1010787. PubMed ID: 36542665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probabilistic grammatical model for helix-helix contact site classification.
    Dyrka W; Nebel JC; Kotulska M
    Algorithms Mol Biol; 2013 Dec; 8(1):31. PubMed ID: 24350601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting conserved protein motifs with Sub-HMMs.
    Horan K; Shelton CR; Girke T
    BMC Bioinformatics; 2010 Apr; 11():205. PubMed ID: 20420695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subtle motifs: defining the limits of motif finding algorithms.
    Keich U; Pevzner PA
    Bioinformatics; 2002 Oct; 18(10):1382-90. PubMed ID: 12376383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SLiMFinder: a probabilistic method for identifying over-represented, convergently evolved, short linear motifs in proteins.
    Edwards RJ; Davey NE; Shields DC
    PLoS One; 2007 Oct; 2(10):e967. PubMed ID: 17912346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mining for class-specific motifs in protein sequence classification.
    Srinivasan SM; Vural S; King BR; Guda C
    BMC Bioinformatics; 2013 Mar; 14():96. PubMed ID: 23496846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probabilistic models for semisupervised discriminative motif discovery in DNA sequences.
    Kim JK; Choi S
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1309-17. PubMed ID: 21778525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic modeling of RNA pseudoknotted structures: a grammatical approach.
    Cai L; Malmberg RL; Wu Y
    Bioinformatics; 2003; 19 Suppl 1():i66-73. PubMed ID: 12855439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.