These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 3392669)

  • 21. The effect of varying albumin concentration of the hydraulic conductivity of the rabbit common carotid artery.
    Tarbell JM; Lever MJ; Caro CG
    Microvasc Res; 1988 Mar; 35(2):204-20. PubMed ID: 3367793
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Water flow across the walls of single muscle capillaries in the frog, Rana pipiens.
    Curry FE; Frøkjaer-Jensen J
    J Physiol; 1984 May; 350():293-307. PubMed ID: 6611400
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Viscous and osmotically mediated changes in fluid movement across synovium in response to intraarticular albumin.
    Levick JR; McDonald JN
    Microvasc Res; 1994 Jan; 47(1):68-89. PubMed ID: 8022315
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Do transvascular forces in isolated lobe preparations equilibrate?
    Hancock BJ; Hoppensack M; Oppenheimer L
    J Appl Physiol (1985); 1989 Aug; 67(2):628-35. PubMed ID: 2793663
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of chemical fixation on the permeability of frog mesenteric capillaries.
    Clough G; Michel CC
    J Physiol; 1987 Nov; 392():463-74. PubMed ID: 3128658
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluid filtration and reabsorption across microvascular walls: control by oncotic or osmotic pressure? (secondary publication).
    Bulat M; Klarica M
    Croat Med J; 2014 Aug; 55(4):291-8. PubMed ID: 25300098
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transient transcapillary exchange of water driven by osmotic forces in the heart.
    Kellen MR; Bassingthwaighte JB
    Am J Physiol Heart Circ Physiol; 2003 Sep; 285(3):H1317-31. PubMed ID: 12738617
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of plasma- and cell-free perfusates on filtration coefficient of perfused canine lungs.
    Rippe B; Townsley MI; Taylor AE
    J Appl Physiol (1985); 1985 May; 58(5):1521-7. PubMed ID: 2581928
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vascular resistance and Kf in normal and PMA-injured rabbit lungs: effects of adenosine.
    Bradley JD; Zanaboni PB; Dahms TE; Webster RO
    J Appl Physiol (1985); 1991 Aug; 71(2):417-24. PubMed ID: 1938712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measurement of osmotic reflection coefficient for small molecules in cat hindlimbs.
    Wolf MB; Watson PD
    Am J Physiol; 1989 Jan; 256(1 Pt 2):H282-90. PubMed ID: 2912190
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The importance of flow pulsatility for the rate of transvascular fluid filtration in lungs.
    Hauge A; Nicolaysen G
    J Physiol; 1979 May; 290(2):569-76. PubMed ID: 469800
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of perfusate oncotic pressure on the transcapillary clearance of albumin in maximally vasodilated rat skeletal muscle.
    Haraldsson B; Rippe B
    Acta Physiol Scand; 1987 Jun; 130(2):219-28. PubMed ID: 3604712
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of albumin on glomerular ultrafiltration coefficient in isolated perfused dog glomerulus.
    Fried TA; McCoy RN; Osgood RW; Stein JH
    Am J Physiol; 1986 May; 250(5 Pt 2):F901-6. PubMed ID: 3706541
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An analysis of the interaction between interstitial plasma protein, interstitial flow, and fenestral filtration and its application to synovium.
    Levick JR
    Microvasc Res; 1994 Jan; 47(1):90-125. PubMed ID: 8022316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous measurement of fluid and protein permeability in isolated rabbit lungs during edema.
    Vincent PA; Kreienberg PB; Minnear FL; Saba TM; Bell DR
    J Appl Physiol (1985); 1992 Dec; 73(6):2440-7. PubMed ID: 1490956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Derecruitment of filtration surface area in paraquat-injured isolated dog lungs.
    Shibamoto T; Parker JC; Taylor AE; Townsley MI
    J Appl Physiol (1985); 1990 Apr; 68(4):1581-9. PubMed ID: 2347796
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oncotic pressures opposing filtration across non-fenestrated rat microvessels.
    Adamson RH; Lenz JF; Zhang X; Adamson GN; Weinbaum S; Curry FE
    J Physiol; 2004 Jun; 557(Pt 3):889-907. PubMed ID: 15073281
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increased microvascular permeability in dog lungs due to high peak airway pressures.
    Parker JC; Townsley MI; Rippe B; Taylor AE; Thigpen J
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Dec; 57(6):1809-16. PubMed ID: 6511554
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The permeability of the microvasculature of the perfused rat testis to small hydrophilic substances.
    Bustamante JC; Setchell BP
    J Androl; 2000; 21(3):444-51. PubMed ID: 10819453
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Effects of age on filtration coefficient in isolated zone 3 rat perfused lungs].
    Komatsu H; Enzan K; Suzuki M
    Masui; 1994 Apr; 43(4):534-7. PubMed ID: 8189618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.